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Abstract: In this paper, we consider the equation

v e +p0h(y) = f(2),
where p , q and f are real valued continuous functions on [ 0,00) such that
p(t) <0, q(t) <0,f(t) > 0,y > 0 is ration of odd integers and h is continuous
in (—o0,00) such that h(y)y > 0 for y # 0. We obtain sufficient conditions for
solutions of the considered equation to be nonoscillatory.
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1. Introduction

This paper concerns with qualitative behaviour of nonoscillatory solutions of
the third-order nonhomogeneous equation

v +a) ) +p(0)h(y) = f(1), (1)
where p, ¢ and f are real valued continuous functions on [0,00) such that
p(t) < 0, q(t) < 0,f(t) > 0 and v > 0 is ration of odd integers and h is
continuous of y € (—oo,00) satisfying h(y)y > 0 for y # 0. We restrict our
considerations to those real solutions of (1) which exist on the half line [T, c0),
where T > 0 depends on the particular solution and are nontrivial in any
neighbourhood of infinity. We classify solutions of (1) as follows: a solution
y(t) is said to be nonoscillatory if there exists a ¢; > T such that y(¢) # 0 for
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t > t1 ; y(t) is said to be oscillatory if for any ¢; > T there exist to and t3
satisfying t1 < to < t3 such that y(t2) > 0 and y(t3) < 0 ; and it is said to be
a z-type solution if it has arbitrarily large zeros but is ultimately non-negative
or non-positive.

The oscillatory properties of solutions of

y" + Pty +Qt)y +R(t)y=0

were first studied by Birkhoff [2]. More recent work on this equation can be
found in Hanan [4], Lazer [6], Heidel [5], Barret [1], and Erbe [3]. For more
information, the reader is referred to the references in Erbe [3], Heidel [5] and
Lazer [6]. Heidel [5] investigated the qualitative behaviour of nonoscillatory
solutions of nonlinear homogeneous third order differential equation

' +at)y +p(t)y’ = 0.
He considered two cases: (i) p(t) <0, ¢(t) < 0; and (ii) p(¢) > 0, ¢(¢) > 0. N.
Parhi [8] was concerned with the equation
(r(t)y") +a®)(y') +p(t)y” = £(1)
by using the result of Heidel and [7].

2.

We consider equation (1). Let y1(¢), y2(t) and y3(t) are solutions of (1)
[to, 00), tg > 0, respectively with initial conditions yi(to) = 0, v (to) =
vy (to) = 05 y2(to) = 1, yalto) = 1, y(to) = 0 and ys(to) = 0, y3(to) =

3/3 ;(to) = 1.
Theorem 1. Let q(t) be once continuously differentiable such that ¢'(t) > 0

and v =1 1in (1). If q(tp) = 0, y1(t) cannot meet ys(t) in [ty,00). If q(tg) = 0,
y1(t) and y2(t) cannot meet in the strip [to,to + 4/ ——q%to))'

Proof. Integrating y, + q(t)y; (t) + p(t)h(y1(t)) = f(t) from to to t, we get

on
1,
0,

t
1

w0 = —at) + / ¢ () (s)ds — / P (s + [ f(s)ds

to to

Further integration from #g to ¢ yields

vi(t) = (t—to) — /to(/to q(s)y1(s)ds) d9+/to/to /to s)dsdfdu



THE BEHAVIOUR OF SOLUTIONS OF... 65

u 0
// / h(y1(s dsd@du—i—// f(s)dsdfdu.
to Jto Jto to Jto

Integrating vy (£) + q(t)ys(t) + p(t)h(y2(t)) = f(t) from tg to t, we get

t o —t9)?
yz(t)=1+(t—to)—/t /t Q(S)yz(S)ddeF‘l(tO)w

/ / / s)dsdfdu
to Jto Jto

u 0
/// h(ya (s dsdﬁdu—l—// f(s)dsdfdu.
to Jtg Jto to Jto

Suppose that y;(t) meets yo(t) first at t = t1 > to. So y1(t) < y2(t) for
t € [to,t1) and y1(t1) = y2(t1). Consequently, we have

(ty — to)?
2
If q(t9) = 0, the above inequality leads to a contradiction 1 < 0.If ¢(ty) = 0,
2
then tl Z t() + m
Hence the theorem. O
Theorem 2. Suppose that conditions of Theorem 1 are satisfied. Then y; ()
and ys3(t) cannot meet in the strip (to,to + 2) and y2(t) and ys(t) cannot meet
in the strip

y2(t1) > 14 q(to) + y1(t1).

1+ 3 - 2q(t0)

to,t
lbo, b0 + 1 —q(to)

).

The proof of this theorem is similar to that of Theorem 1.

In the following, we state some lemmas which will be used in the sequel.

Lemma 3. Let p =0 in (1). If y(t) is a solution of (1) on [T,00),T > 0,
then there exists a ¢ > T such that y/(t) >0or<0fort>c.

This lemma has been already proved in [8] by Parhi.

Lemma 4. If y(t) is a solution of (1) on [T,00),T > 0, such that it is
ultimately positive, then there exists a ¢ > T such that y (t) > 0 or < 0 for
t>c.

Proof. If possible, let 3 (t) be oscillatory. Let a and b (T < a < b) be
consecutive zeros of y (t) such that y'(t) > 0 for t € (a,b),y"(a) > 0 and
y' (b) < 0. Integrating (1) from a to b, we get

1 1

b
0>r(b)y (b) —r(a)y (a) = / [—a(8)(y (1)) + f(®)]dt > 0,
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a contradiction. Similarly, it can be shown that ¢ (t) cannot be of nonnegative
z-type.

Hence the lemma. O

The following lemma is due to Heidel [5].

Lemma 5. Let g : [tg,00) — R, tg > 0. Suppose that g(t) > 0 and that
g (t), g (t) exist for t > to. Suppose also that if ¢ (t) > 0 ultimately, then

lim g(t) = A < 0.
t—o00
Then
litm inf [t% (t) —at® g ()] =0
— 00

for any « such that 0 < o < 2.

Theorem 6. Consider (1) with v = 1. For some fixed o with 0 < o < 2,
suppose that —oo < —M < t2q(t), [;° t*p(t)h(y(t))dt = —co and [t f(t)dt <
co. If y(t) is a nonoscillatory solution of (1) such that y(t)y (t) < 0 ultimately
then

lim y(t) = 0.

t—o0

Proof. If y(t) is ultimately positive, we proceed as in Theorem 2.3 of Heidel
[5] to obtain
lim y(t) = 0.

t—o0

Suppose that y(t) is ultimately negative. So there exists a to > 0 that y(t) < 0
and y (t) > 0 for t > t. Let

tlim y(t) =—A,A>0.

Multiplying (1) through by t*, ¢ > o, and integrating the result identity from
to to t, we get

57y ()L, — afs® Yy ()], + afar— 1) / sy (s)ds + / sq(s)y (s)ds

Ot to .
T / s p(s)h(y(s))ds = / 5% f(s)ds,

that is,

t
Y (t) —at® Y (1) <tgy (to) —at 'y (to) + M [ y (s)ds

to
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~afa—1) / "2y (5)ds — / " sop()h(y(s))ds + / O fs)ds. (2)

to to to
Clearly,
t !
lim [y (s)ds = —A - y(to),
t—o00 to
t

0< lim [ 5272y (s)ds < t§2(=A — y(to))

—00 to
and

lim [ s%p(s)h(y(s))ds = oo.

t—o0 to
Hence, taking liminf in (2) as t — oo, we get

liminf(t%y" (t) — at® 'y (1)) = —oc.
t—00
But, by Lemma 5, liminf, ... (t*y" (t) — at® 'y (t)) = 0. This contradiction
proves the theorem. O

Remark. Lazer [6] and Heidel [5] gave sufficient conditions so that nonoscil-
latory solutions y(t¢) of homogeneous third order equations satisfy the property
y(t)y' (t) > 0 ultimately. In the following we give sufficient conditions so that
y(t)y (t) < 0 ultimately.

Theorem 7. Consider (1) with f(t) = 0, h(y) is nondecreasing and ~y as
the ratio of odd integers. Suppose that fooo p(t)dt = —oco. If y(t) is a bounded
nonoscillatory solution of (1), then y(t)y (t) < 0 ultimately.

Proof. Without any loss of generality we can assume y(¢) to be ultimately
positive. By Lemma 4, there exists a to > 0 such that y(t) > 0 and y'(t) > 0
or < 0 for t > ty. Suppose that 3 (t) > 0 for t > ty. Since y > 0 and y(t) is
bounded. 3" (t) is monotonic increasing and y” (£) < 0. Integrating (1) from tg
to t, we get

yu>>y%w—ZMWM@m >y%@—mwmjmm&

So lim; .o 9" (t) = 00, which contradicts the fact that

lim 3" (t) < 0.

t—o0
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Hence y(t)y (t) < 0 for t > t. O

Corollary. In (1), let f(t) =0 and v = 1. Suppose that [ p(t)dt = —oo

and —oo < —M < t%q(t) for some fixed o with 0 < a < 2. Ify(t) is a bounded
nonoscillatory solution of (1), then

1]

lim y(t) = 0.
t—o00

This follows from Theorem 6 and 7.
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