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Abstract: In this paper, we consider the equation

y
′′′

+ q(t)(y′)γ + p(t)h(y) = f(t) ,

where p , q and f are real valued continuous functions on [ 0,∞) such that
p(t) ≤ 0 , q(t) ≤ 0,f(t) ≥ 0,γ > 0 is ration of odd integers and h is continuous
in (−∞,∞) such that h(y)y > 0 for y 6= 0. We obtain sufficient conditions for
solutions of the considered equation to be nonoscillatory.
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1. Introduction

This paper concerns with qualitative behaviour of nonoscillatory solutions of
the third-order nonhomogeneous equation

y
′′′

+ q(t)(y′)γ + p(t)h(y) = f(t) , (1)

where p, q and f are real valued continuous functions on [0,∞) such that
p(t) ≤ 0, q(t) ≤ 0, f(t) ≥ 0 and γ > 0 is ration of odd integers and h is
continuous of y ∈ (−∞,∞) satisfying h(y)y > 0 for y 6= 0. We restrict our
considerations to those real solutions of (1) which exist on the half line [T,∞),
where T ≥ 0 depends on the particular solution and are nontrivial in any
neighbourhood of infinity. We classify solutions of (1) as follows: a solution
y(t) is said to be nonoscillatory if there exists a t1 ≥ T such that y(t) 6= 0 for
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t ≥ t1 ; y(t) is said to be oscillatory if for any t1 ≥ T there exist t2 and t3
satisfying t1 < t2 < t3 such that y(t2) > 0 and y(t3) < 0 ; and it is said to be
a z-type solution if it has arbitrarily large zeros but is ultimately non-negative
or non-positive.

The oscillatory properties of solutions of

y
′′′

+ P (t)y
′′

+ Q(t)y
′

+ R(t)y = 0

were first studied by Birkhoff [2]. More recent work on this equation can be
found in Hanan [4], Lazer [6], Heidel [5], Barret [1], and Erbe [3]. For more
information, the reader is referred to the references in Erbe [3], Heidel [5] and
Lazer [6]. Heidel [5] investigated the qualitative behaviour of nonoscillatory
solutions of nonlinear homogeneous third order differential equation

y
′′′

+ q(t)y
′

+ p(t)yβ = 0.

He considered two cases: (i) p(t) ≤ 0, q(t) ≤ 0; and (ii) p(t) ≥ 0, q(t) ≥ 0. N.
Parhi [8] was concerned with the equation

(r(t)y
′′

)
′

+ q(t)(y′)γ + p(t)yβ = f(t)

by using the result of Heidel and [7].

2.

We consider equation (1). Let y1(t), y2(t) and y3(t) are solutions of (1) on
[t0,∞), t0 ≥ 0, respectively with initial conditions y1(t0) = 0, y

′

1(t0) = 1,
y
′′

1 (t0) = 0 ; y2(t0) = 1, y
′

2(t0) = 1, y
′′

2 (t0) = 0 and y3(t0) = 0, y
′

3(t0) = 0,
y
′′

3 (t0) = 1.
Theorem 1. Let q(t) be once continuously differentiable such that q′(t) ≥ 0

and γ = 1 in (1). If q(t0) = 0, y1(t) cannot meet y2(t) in [t0,∞). If q(t0) = 0,

y1(t) and y2(t) cannot meet in the strip [t0, t0 +
√

2
−q(t0)).

Proof. Integrating y
′′′

1 + q(t)y
′

1(t) + p(t)h(y1(t)) = f(t) from t0 to t, we get

y
′′

1 (t) = −q(t)y1(t) +

∫ t

t0

q
′

(s)y1(s)ds −

∫ t

t0

p(s)h(y1(s))ds +

∫ t

t0

f(s)ds.

Further integration from t0 to t yields

y1(t) = (t − t0) −

∫ t

t0

(

∫ θ

t0

q(s)y1(s)ds)dθ +

∫ t

t0

∫ u

t0

∫ θ

t0

q
′

(s)y1(s)dsdθdu
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−

∫ t

t0

∫ u

t0

∫ θ

t0

p(s)h(y1(s))dsdθdu +

∫ t

t0

∫ u

t0

∫ θ

t0

f(s)dsdθdu.

Integrating y
′′′

2 (t) + q(t)y
′

2(t) + p(t)h(y2(t)) = f(t) from t0 to t, we get

y2(t) = 1 + (t − t0) −

∫ t

t0

∫ θ

t0

q(s)y2(s)dsdθ + q(t0)
(t − t0)

2

2

+

∫ t

t0

∫ u

t0

∫ θ

t0

q
′

(s)y2(s)dsdθdu

−

∫ t

t0

∫ u

t0

∫ θ

t0

p(s)h(y2(s))dsdθdu +

∫ t

t0

∫ u

t0

∫ θ

t0

f(s)dsdθdu.

Suppose that y1(t) meets y2(t) first at t = t1 > t0. So y1(t) < y2(t) for
t ∈ [t0, t1) and y1(t1) = y2(t1). Consequently, we have

y2(t1) ≥ 1 + q(t0)
(t1 − t0)

2

2
+ y1(t1).

If q(t0) = 0, the above inequality leads to a contradiction 1 ≤ 0.If q(t0) = 0,

then t1 ≥ t0 +
√

2
−q(t0) .

Hence the theorem.
Theorem 2. Suppose that conditions of Theorem 1 are satisfied.Then y1(t)

and y3(t) cannot meet in the strip (t0, t0 + 2) and y2(t) and y3(t) cannot meet
in the strip

[t0, t0 +
1 +

√

3 − 2q(t0)

1 − q(t0)
).

The proof of this theorem is similar to that of Theorem 1.
In the following, we state some lemmas which will be used in the sequel.
Lemma 3. Let p ≡ 0 in (1). If y(t) is a solution of (1) on [T,∞), T ≥ 0,

then there exists a c ≥ T such that y
′

(t) > 0 or ≤ 0 for t ≥ c.
This lemma has been already proved in [8] by Parhi.
Lemma 4. If y(t) is a solution of (1) on [T,∞), T ≥ 0, such that it is

ultimately positive, then there exists a c ≥ T such that y
′

(t) > 0 or ≤ 0 for
t ≥ c.

Proof. If possible, let y
′

(t) be oscillatory. Let a and b (T ≤ a < b) be
consecutive zeros of y

′

(t) such that y
′

(t) > 0 for t ∈ (a, b), y
′′

(a) ≥ 0 and
y
′′

(b) ≤ 0. Integrating (1) from a to b, we get

0 > r(b)y
′′

(b) − r(a)y
′′

(a) =

∫ b

a

[−q(t)(y
′

(t))γ + f(t)]dt > 0,
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a contradiction. Similarly, it can be shown that y
′

(t) cannot be of nonnegative
z-type.

Hence the lemma.
The following lemma is due to Heidel [5].
Lemma 5. Let g : [t0,∞) → R, t0 ≥ 0. Suppose that g(t) > 0 and that

g
′

(t), g
′′

(t) exist for t ≥ t0. Suppose also that if g
′

(t) ≥ 0 ultimately, then

lim
t→∞

g(t) = A < ∞.

Then
lim inf
t→∞

|tαg
′′

(t) − αtα−1g
′

(t)| = 0

for any α such that 0 ≤ α ≤ 2.
Theorem 6. Consider (1) with γ = 1. For some fixed α with 0 ≤ α ≤ 2,

suppose that −∞ < −M < t2q(t),
∫

∞

0 tαp(t)h(y(t))dt = −∞ and
∫

∞

0 tαf(t)dt <

∞. If y(t) is a nonoscillatory solution of (1) such that y(t)y
′

(t) ≤ 0 ultimately
then

lim
t→∞

y(t) = 0.

Proof. If y(t) is ultimately positive, we proceed as in Theorem 2.3 of Heidel
[5] to obtain

lim
t→∞

y(t) = 0.

Suppose that y(t) is ultimately negative. So there exists a t0 > 0 that y(t) < 0
and y

′

(t) ≥ 0 for t ≥ t0. Let

lim
t→∞

y(t) = −A,A > 0.

Multiplying (1) through by tα, t ≥ t0, and integrating the result identity from
t0 to t, we get

[sαy
′′

(s)]tt0 − α[sα−1y
′

(s)]tt0 + α(α − 1)

∫ t

t0

sα−2y
′

(s)ds +

∫ t

t0

sαq(s)y
′

(s)ds

+

∫ t

t0

sαp(s)h(y(s))ds =

∫ t

t0

sαf(s)ds,

that is,

tαy
′′

(t) − αtα−1y
′

(t) ≤ tα0 y
′′

(t0) − αtα−1
0 y

′

(t0) + M

∫ t

t0

y
′

(s)ds



THE BEHAVIOUR OF SOLUTIONS OF... 67

− α(α − 1)

∫ t

t0

sα−2y
′

(s)ds −

∫ t

t0

sαp(s)h(y(s))ds +

∫ t

t0

sαf(s)ds. (2)

Clearly,

lim
t→∞

∫ t

t0

y
′

(s)ds = −A − y(t0) ,

0 ≤ lim
t→∞

∫ t

t0

sα−2y
′

(s)ds ≤ tα−2
0 (−A − y(t0))

and

lim
t→∞

∫ t

t0

sαp(s)h(y(s))ds = ∞.

Hence, taking lim inf in (2) as t → ∞, we get

lim inf
t→∞

(tαy
′′

(t) − αtα−1y
′

(t)) = −∞.

But, by Lemma 5, lim inft→∞(tαy
′′

(t) − αtα−1y
′

(t)) = 0. This contradiction
proves the theorem.

Remark. Lazer [6] and Heidel [5] gave sufficient conditions so that nonoscil-
latory solutions y(t) of homogeneous third order equations satisfy the property
y(t)y

′

(t) ≥ 0 ultimately. In the following we give sufficient conditions so that
y(t)y

′

(t) ≤ 0 ultimately.

Theorem 7. Consider (1) with f(t) ≡ 0, h(y) is nondecreasing and γ as
the ratio of odd integers. Suppose that

∫

∞

0 p(t)dt = −∞. If y(t) is a bounded

nonoscillatory solution of (1), then y(t)y
′

(t) ≤ 0 ultimately.

Proof. Without any loss of generality we can assume y(t) to be ultimately
positive. By Lemma 4, there exists a t0 > 0 such that y(t) > 0 and y

′

(t) > 0
or ≤ 0 for t ≥ t0. Suppose that y

′

(t) > 0 for t ≥ t0. Since y
′′′

≥ 0 and y(t) is
bounded. y

′′

(t) is monotonic increasing and y
′′

(t) ≤ 0. Integrating (1) from t0
to t, we get

y
′′

(t) ≥ y
′′

(t0) −

∫ t

t0

p(s)h(y(s))ds ≥ y
′′

(t0) − h(y(t0))

∫ t

t0

p(s)ds.

So limt→∞ y
′′

(t) = ∞, which contradicts the fact that

lim
t→∞

y
′′

(t) ≤ 0.



68 P. Temtek

Hence y(t)y
′

(t) ≤ 0 for t ≥ t0.
Corollary. In (1), let f(t) ≡ 0 and γ = 1. Suppose that

∫

∞

0 p(t)dt = −∞
and −∞ < −M < tαq(t) for some fixed α with 0 ≤ α ≤ 2. If y(t) is a bounded
nonoscillatory solution of (1), then

lim
t→∞

y(t) = 0.

This follows from Theorem 6 and 7.

References

[1] J.H. Barrett, Oscillation theory of ordinary linear differential equations,
Advances in Mathematics, 3 (1969), 415-509.

[2] G.D. Birkhoff, On solutions of the ordinary linear differential equations of
the third order, Ann. of Math., 12 (1911), 103-127.

[3] L. Erbe, Oscillation, nonoscillation, and asymptotic behaviour for third
order non-linear differential equations, Annali di Mate. Pura ed Appl., 110

(1976), 373-393.

[4] M. Hanan, Oscillation criteria for third order linear differential equations,
Pasific J. Math., 11 (1961), 919-944.

[5] J.W. Heidel, Qualitative behaviour of solutions of a third order nonlinear
differential equation, Pasific J. Math., 27 (1968), 507-526.

[6] A.C. Lazer, The behaviour of solutions of the differential equation y
′′′

+
p(t)y

′′

+ q(t)y = 0, Pasific J. Math., 17 (1966), 435-466.

[7] N. Parhi, S.K. Nayak, On nonoscillatory behaviour of solutions of nonlinear
differential equations, Atti Della Acad. Nazionale Dei Lincei, 65 (1978),
58-62.

[8] N. Parhi, Nonoscillatory behaviour of solutions of nonhomogeneous third
order differential equations, Applicable Analysis, 12 (1981), 273-285.


