International Journal of Pure and Applied Mathematics

Volume 39 No. 1 2007, 63-68

THE BEHAVIOUR OF SOLUTIONS OF NONHOMOGENEOUS THIRD ORDER DIFFERENTIAL EQUATIONS

Pakize Temtek

Department of Mathematics Erciyes University Kayseri, 38039, TURKEY e-mail: temtek@erciyes.edu.tr

Abstract: In this paper, we consider the equation

$$y''' + q(t)(y')^{\gamma} + p(t)h(y) = f(t),$$

where p, q and f are real valued continuous functions on $[0,\infty)$ such that $p(t) \leq 0$, $q(t) \leq 0, f(t) \geq 0, \gamma > 0$ is ration of odd integers and h is continuous in $(-\infty,\infty)$ such that h(y)y > 0 for $y \neq 0$. We obtain sufficient conditions for solutions of the considered equation to be nonoscillatory.

AMS Subject Classification: 34C15

Key Words: third order nonlinear differential equations, nonoscillatory

1. Introduction

This paper concerns with qualitative behaviour of nonoscillatory solutions of the third-order nonhomogeneous equation

$$y^{\prime\prime\prime} + q(t)(y')^{\gamma} + p(t)h(y) = f(t), \qquad (1)$$

where p, q and f are real valued continuous functions on $[0, \infty)$ such that $p(t) \leq 0, q(t) \leq 0, f(t) \geq 0$ and $\gamma > 0$ is ration of odd integers and h is continuous of $y \in (-\infty, \infty)$ satisfying h(y)y > 0 for $y \neq 0$. We restrict our considerations to those real solutions of (1) which exist on the half line $[T, \infty)$, where $T \geq 0$ depends on the particular solution and are nontrivial in any neighbourhood of infinity. We classify solutions of (1) as follows: a solution y(t) is said to be nonoscillatory if there exists a $t_1 \geq T$ such that $y(t) \neq 0$ for

Received: April 20, 2007

© 2007, Academic Publications Ltd.

 $t \ge t_1$; y(t) is said to be oscillatory if for any $t_1 \ge T$ there exist t_2 and t_3 satisfying $t_1 < t_2 < t_3$ such that $y(t_2) > 0$ and $y(t_3) < 0$; and it is said to be a z-type solution if it has arbitrarily large zeros but is ultimately non-negative or non-positive.

The oscillatory properties of solutions of

$$y''' + P(t)y'' + Q(t)y' + R(t)y = 0$$

were first studied by Birkhoff [2]. More recent work on this equation can be found in Hanan [4], Lazer [6], Heidel [5], Barret [1], and Erbe [3]. For more information, the reader is referred to the references in Erbe [3], Heidel [5] and Lazer [6]. Heidel [5] investigated the qualitative behaviour of nonoscillatory solutions of nonlinear homogeneous third order differential equation

$$y''' + q(t)y' + p(t)y^{\beta} = 0$$

He considered two cases: (i) $p(t) \leq 0$, $q(t) \leq 0$; and (ii) $p(t) \geq 0$, $q(t) \geq 0$. N. Parhi [8] was concerned with the equation

$$(r(t)y'')' + q(t)(y')^{\gamma} + p(t)y^{\beta} = f(t)$$

by using the result of Heidel and [7].

2.

We consider equation (1). Let $y_1(t)$, $y_2(t)$ and $y_3(t)$ are solutions of (1) on $[t_0,\infty)$, $t_0 \ge 0$, respectively with initial conditions $y_1(t_0) = 0$, $y'_1(t_0) = 1$, $y''_1(t_0) = 0$; $y_2(t_0) = 1$, $y''_2(t_0) = 1$, $y''_2(t_0) = 0$ and $y_3(t_0) = 0$, $y'_3(t_0) = 0$, $y''_3(t_0) = 1$.

Theorem 1. Let q(t) be once continuously differentiable such that $q'(t) \ge 0$ and $\gamma = 1$ in (1). If $q(t_0) = 0$, $y_1(t)$ cannot meet $y_2(t)$ in $[t_0, \infty)$. If $q(t_0) = 0$, $y_1(t)$ and $y_2(t)$ cannot meet in the strip $[t_0, t_0 + \sqrt{\frac{2}{-q(t_0)}})$.

Proof. Integrating $y_1''' + q(t)y_1'(t) + p(t)h(y_1(t)) = f(t)$ from t_0 to t, we get

$$y_1''(t) = -q(t)y_1(t) + \int_{t_0}^t q'(s)y_1(s)ds - \int_{t_0}^t p(s)h(y_1(s))ds + \int_{t_0}^t f(s)ds.$$

Further integration from t_0 to t yields

$$y_1(t) = (t - t_0) - \int_{t_0}^t (\int_{t_0}^\theta q(s)y_1(s)ds)d\theta + \int_{t_0}^t \int_{t_0}^u \int_{t_0}^\theta q'(s)y_1(s)dsd\theta du$$

$$-\int_{t_0}^t\int_{t_0}^u\int_{t_0}^\theta p(s)h(y_1(s))dsd\theta du + \int_{t_0}^t\int_{t_0}^u\int_{t_0}^\theta f(s)dsd\theta du.$$

Integrating $y_{2}''(t) + q(t)y_{2}'(t) + p(t)h(y_{2}(t)) = f(t)$ from t_{0} to t, we get

$$y_{2}(t) = 1 + (t - t_{0}) - \int_{t_{0}}^{t} \int_{t_{0}}^{\theta} q(s)y_{2}(s)dsd\theta + q(t_{0})\frac{(t - t_{0})^{2}}{2} + \int_{t_{0}}^{t} \int_{t_{0}}^{u} \int_{t_{0}}^{\theta} q'(s)y_{2}(s)dsd\theta du - \int_{t_{0}}^{t} \int_{t_{0}}^{u} \int_{t_{0}}^{\theta} p(s)h(y_{2}(s))dsd\theta du + \int_{t_{0}}^{t} \int_{t_{0}}^{u} \int_{t_{0}}^{\theta} f(s)dsd\theta du.$$

Suppose that $y_1(t)$ meets $y_2(t)$ first at $t = t_1 > t_0$. So $y_1(t) < y_2(t)$ for $t \in [t_0, t_1)$ and $y_1(t_1) = y_2(t_1)$. Consequently, we have

$$y_2(t_1) \ge 1 + q(t_0)\frac{(t_1 - t_0)^2}{2} + y_1(t_1)$$

If $q(t_0) = 0$, the above inequality leads to a contradiction $1 \leq 0$. If $q(t_0) = 0$, then $t_1 \ge t_0 + \sqrt{\frac{2}{-q(t_0)}}$. Hence the theorem.

Theorem 2. Suppose that conditions of Theorem 1 are satisfied. Then $y_1(t)$ and $y_3(t)$ cannot meet in the strip $(t_0, t_0 + 2)$ and $y_2(t)$ and $y_3(t)$ cannot meet in the strip

$$[t_0, t_0 + \frac{1 + \sqrt{3 - 2q(t_0)}}{1 - q(t_0)}).$$

The proof of this theorem is similar to that of Theorem 1.

In the following, we state some lemmas which will be used in the sequel.

Lemma 3. Let $p \equiv 0$ in (1). If y(t) is a solution of (1) on $[T, \infty), T \geq 0$, then there exists a $c \ge T$ such that y'(t) > 0 or ≤ 0 for $t \ge c$.

This lemma has been already proved in [8] by Parhi.

Lemma 4. If y(t) is a solution of (1) on $[T,\infty), T \ge 0$, such that it is ultimately positive, then there exists a $c \ge T$ such that y'(t) > 0 or ≤ 0 for $t\geq c.$

Proof. If possible, let y'(t) be oscillatory. Let a and b $(T \le a < b)$ be consecutive zeros of y'(t) such that y'(t) > 0 for $t \in (a,b), y''(a) \ge 0$ and $y''(b) \leq 0$. Integrating (1) from a to b, we get

$$0 > r(b)y''(b) - r(a)y''(a) = \int_{a}^{b} [-q(t)(y'(t))^{\gamma} + f(t)]dt > 0,$$

a contradiction. Similarly, it can be shown that y'(t) cannot be of nonnegative z-type.

Hence the lemma.

The following lemma is due to Heidel [5].

Lemma 5. Let $g: [t_0, \infty) \to R$, $t_0 \ge 0$. Suppose that g(t) > 0 and that g'(t), g''(t) exist for $t \ge t_0$. Suppose also that if $g'(t) \ge 0$ ultimately, then

$$\lim_{t \to \infty} g(t) = A < \infty.$$

Then

$$\liminf_{t \to \infty} |t^{\alpha} g^{''}(t) - \alpha t^{\alpha - 1} g^{'}(t)| = 0$$

for any α such that $0 \leq \alpha \leq 2$.

Theorem 6. Consider (1) with $\gamma = 1$. For some fixed α with $0 \le \alpha \le 2$, suppose that $-\infty < -M < t^2q(t)$, $\int_0^\infty t^\alpha p(t)h(y(t))dt = -\infty$ and $\int_0^\infty t^\alpha f(t)dt < \infty$. If y(t) is a nonoscillatory solution of (1) such that $y(t)y'(t) \le 0$ ultimately then

$$\lim_{t \to \infty} y(t) = 0$$

Proof. If y(t) is ultimately positive, we proceed as in Theorem 2.3 of Heidel [5] to obtain

$$\lim_{t \to \infty} y(t) = 0.$$

Suppose that y(t) is ultimately negative. So there exists a $t_0 > 0$ that y(t) < 0and $y'(t) \ge 0$ for $t \ge t_0$. Let

$$\lim_{t \to \infty} y(t) = -A, A > 0.$$

Multiplying (1) through by t^{α} , $t \geq t_0$, and integrating the result identity from t_0 to t, we get

$$\begin{split} [s^{\alpha}y^{''}(s)]_{t_{0}}^{t} - \alpha[s^{\alpha-1}y^{'}(s)]_{t_{0}}^{t} + \alpha(\alpha-1)\int_{t_{0}}^{t}s^{\alpha-2}y^{'}(s)ds + \int_{t_{0}}^{t}s^{\alpha}q(s)y^{'}(s)ds \\ + \int_{t_{0}}^{t}s^{\alpha}p(s)h(y(s))ds = \int_{t_{0}}^{t}s^{\alpha}f(s)ds \end{split}$$

that is,

$$t^{\alpha}y^{''}(t) - \alpha t^{\alpha-1}y^{'}(t) \le t_{0}^{\alpha}y^{''}(t_{0}) - \alpha t_{0}^{\alpha-1}y^{'}(t_{0}) + M\int_{t_{0}}^{t}y^{'}(s)ds$$

$$-\alpha(\alpha-1)\int_{t_0}^t s^{\alpha-2}y'(s)ds - \int_{t_0}^t s^{\alpha}p(s)h(y(s))ds + \int_{t_0}^t s^{\alpha}f(s)ds.$$
 (2)

Clearly,

$$\lim_{t \to \infty} \int_{t_0}^t y'(s) ds = -A - y(t_0),$$

$$0 \le \lim_{t \to \infty} \int_{t_0}^t s^{\alpha - 2} y'(s) ds \le t_0^{\alpha - 2} (-A - y(t_0))$$

and

$$\lim_{t \to \infty} \int_{t_0}^t s^{\alpha} p(s) h(y(s)) ds = \infty.$$

Hence, taking limit in (2) as $t \to \infty$, we get

$$\liminf_{t \to \infty} (t^{\alpha} y^{''}(t) - \alpha t^{\alpha - 1} y^{'}(t)) = -\infty.$$

But, by Lemma 5, $\liminf_{t\to\infty} (t^{\alpha}y''(t) - \alpha t^{\alpha-1}y'(t)) = 0$. This contradiction proves the theorem.

Remark. Lazer [6] and Heidel [5] gave sufficient conditions so that nonoscillatory solutions y(t) of homogeneous third order equations satisfy the property $y(t)y'(t) \ge 0$ ultimately. In the following we give sufficient conditions so that $y(t)y'(t) \le 0$ ultimately.

Theorem 7. Consider (1) with $f(t) \equiv 0$, h(y) is nondecreasing and γ as the ratio of odd integers. Suppose that $\int_0^\infty p(t)dt = -\infty$. If y(t) is a bounded nonoscillatory solution of (1), then $y(t)y'(t) \leq 0$ ultimately.

Proof. Without any loss of generality we can assume y(t) to be ultimately positive. By Lemma 4, there exists a $t_0 > 0$ such that y(t) > 0 and y'(t) > 0or ≤ 0 for $t \geq t_0$. Suppose that y'(t) > 0 for $t \geq t_0$. Since $y''' \geq 0$ and y(t) is bounded. y''(t) is monotonic increasing and $y''(t) \leq 0$. Integrating (1) from t_0 to t, we get

$$y^{''}(t) \ge y^{''}(t_0) - \int_{t_0}^t p(s)h(y(s))ds \ge y^{''}(t_0) - h(y(t_0))\int_{t_0}^t p(s)ds$$

So $\lim_{t\to\infty} y''(t) = \infty$, which contradicts the fact that

$$\lim_{t \to \infty} y''(t) \le 0$$

Hence $y(t)y'(t) \leq 0$ for $t \geq t_0$.

Corollary. In (1), let $f(t) \equiv 0$ and $\gamma = 1$. Suppose that $\int_0^{\infty} p(t)dt = -\infty$ and $-\infty < -M < t^{\alpha}q(t)$ for some fixed α with $0 \le \alpha \le 2$. If y(t) is a bounded nonoscillatory solution of (1), then

$$\lim_{t \to \infty} y(t) = 0.$$

This follows from Theorem 6 and 7.

References

- J.H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Mathematics, 3 (1969), 415-509.
- [2] G.D. Birkhoff, On solutions of the ordinary linear differential equations of the third order, Ann. of Math., 12 (1911), 103-127.
- [3] L. Erbe, Oscillation, nonoscillation, and asymptotic behaviour for third order non-linear differential equations, Annali di Mate. Pura ed Appl., 110 (1976), 373-393.
- [4] M. Hanan, Oscillation criteria for third order linear differential equations, Pasific J. Math., 11 (1961), 919-944.
- [5] J.W. Heidel, Qualitative behaviour of solutions of a third order nonlinear differential equation, *Pasific J. Math.*, 27 (1968), 507-526.
- [6] A.C. Lazer, The behaviour of solutions of the differential equation y''' + p(t)y'' + q(t)y = 0, *Pasific J. Math.*, **17** (1966), 435-466.
- [7] N. Parhi, S.K. Nayak, On nonoscillatory behaviour of solutions of nonlinear differential equations, Atti Della Acad. Nazionale Dei Lincei, 65 (1978), 58-62.
- [8] N. Parhi, Nonoscillatory behaviour of solutions of nonhomogeneous third order differential equations, Applicable Analysis, 12 (1981), 273-285.