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Abstract: There exists a great variety of quantum distribution functions
in phase space that are widely used in many branches of quantum physics.
The Kirkwood distribution function turned out to be a generating function for
almost all of them. It is also known as Terletsky or Rihaczek quasi-probability.
The goal of the work is to present some computer based graphical examples of
Kirkwood and Wigner distribution functions for some typical systems, such as
harmonic oscillator, potential and hydrogen atom, studied in physics.
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1. Introduction

In quantum physics the knowledge of distribution functions of systems is a very
important task. These are functions defined in the phase space of the system,
i.e. their definition area belongs to the combined configuration (position) and
momentum spaces (~x, ~p). They are considered as quasi-probabilities since some
of them are not strictly non-negative functions in phase space. There exists
a great variety of distribution functions for quantum systems like bosons and
fermions [1]-[8], [17]-[24], [28]. It has been proved (Evtimova and Georgiev
[9]) that all of them can be obtained from one basic quantum distribution
function, namely the distribution function first introduced by Kirkwood [20],
via the action of suitable convolution pseudo-differential operators. Thus, it
turns out that it is important to know the Kirkwood distribution function
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for the existing different quantum systems. The basic systems regarded in
quantum mechanics are: a particle in a potential well, a harmonic oscillator
and hydrogen atom. The Kirkwood distribution function for them all was
functionally investigated by Evtimova [10]-[13] and Georgiev, Evtimova and
Dishlieva [15]. The main stream of investigations in the literature is focused on
Wigner distribution function [16]-[24]. The goal for investigations of Kirkwood
function is inspired by the fact that this distribution occurs in a very natural
way in the quantum field invariants such as energy momentum and spin tensors
of the corresponding fields (see [10], [11] for details).

The purpose of the present work is to give graphical images of these func-
tions via the contemporary powerful computer technologies.

2. Quantum Quasi-Distributions for Harmonic Oscillator, Potential

Well and Hydrogen Atom – Analytical Expressions

Here are given in explicit forms the distribution functions found in [10], [12],
[13], [15] for three basic cases in quantum mechanics, namely: the functions of
Wigner [28] and Kirkwood [20] for harmonic oscillator and potential well, and
the Kirkwood distribution for a hydrogen atom.

The Kirkwood distribution in case of a harmonic oscillator is

Fn
K

(x, p) =
1

π~
Hn(x)Re (in exp(ixp))Pn(p), (1)

where Hn(.) is used to denote the Hermit polynomial, x = αq, α = mω/~, and

Pn(p) =
[n/2]
∑

j=0

∂n−2
p exp(−p2/2)

4jj!(n−2j)!
, here [n/2] is the maximum of the whole part of

n/2, n = 1, 2, 3, . . ..

The Wigner distribution function of a harmonic oscillator has the form

Fn
W (q, p) =

(−1)n

π~
exp

(−2H(q, p)

~ω

)

Ln

(

4H(q, p)

~ω

)

, (2)

where Ln (.) is the Laguerre polynomial of order n = 0, 1, 2, ..., and H =
p2

2m + mω2

2 is the Hamilton function of the system.

For a one dimensional infinite potential well with size a one has that the
Wigner distribution function is [15]

Fn
W (x, p) =

−χa(x)

πap
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(

2kn(x +
a

2
)
)
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2p(
a

2
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)



KIRKWOOD AND WIGNER DISTRIBUTION FUNCTIONS... 585

+
χa((x)

πap

(

sin 2(p + kn)(a/2 − |x|)
p + kn

+
sin 2(p − kn)(a/2 − |x|)

p − kn

)

(3)

and the Kirkwood distribution function is (see [15])

Fn
K(x, p)

=
χa(x)kn sin kn (x + a/2)

πa(k2
n − p2)

(

cos p(x +
a

2
) − (−1)n cos p(x − a

2
)
)

, (4)

where n = 1, 2, 3, . . . and

χa(x) =

{

1, if |x| ≤ a/2 ,

0, if |x| > a/2 .

In the case of the hydrogen atom it is necessary to make a generalization
of the Kirkwood distribution for spherical coordinates both in the position and
on the momentum spaces and thus applying the general theorems from [25] it
was obtained in [10], [12], [13] that

Fnlm
K = C f(r)H 3

2
+l−m(kr)

J1
2 + l − m

(rkr)

(rkr)
1
2

Y ∗

lm(θ, ϕ)Ylm(kθ, kϕ) , (5)

where the notations are as follows: C =const., (r, θ, φ) and (kr, kθ, kφ) are
the corresponding spherical coordinates into the 3-dimensional position and
momentum spaces, Ylm is a spherical harmonic of order l−m, J1

2 + l − m
(rkr)

is a Bessel function, f(r) is connected with radial solution of Klein-Gordon

equation and is equal to f(r) = Nβ
3/2 (β r)mℑ(−n + l + 1, 2l + 2;β r), where

the degenerate hyper-geometrical polynomial is taken as

ℑ(−n + l + 1, 2l + 2;β r) =

n−l−1
∑

s=0

(−1)s
(

n − l − 1
s

)

(2l + 1)!

(2l + s + 1)!
(β r)s,

the Hankel transform is

H 3

2
+l−m(kr) = 2π im−l

∞
∫

0

f(r)

[

J1
2 + l − m

(rkr)/k
1
2 + l − m
r

]

r
3
2 + l − m dr,

n = 1, 2, 3 . . . is the main quantum number, l is the orbital quantum number
and m is the magnetic quantum number.

For the purpose of clearness we shall write down the expression of that
function in the basic state of the hydrogen atom, i.e. the case with quantum
numbers n = 1, l = 0, m = 0:

F 100
K (r, kr)
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=
−8β 3 exp(−β r/2)√
2π3(4k2

r + β2)3/2





∞
∑

q=0

Γ(q − 1/2)

q!

(

4k2
r

4k2
r + β2

)p




sin(rkr)

rkr
, (6)

where r and kr are the radial variables in the position and momentum spaces
respectively, β = 2/r0 , r0 = ~

2/me2 – the Bohr’s radius and Γ(.) is a gamma
function.

3. Quantum Quasi-Distributions for Some States of Harmonic

Oscillator, Potential Well and Basic State of Hydrogen Atom –

Graphical Views

Plots of the two different cases of harmonic oscillator (see Figure 1 and Figure
2):

Figure 1: Real Kirkwood func-
tion for n = 1

Figure 2: Real Kirkwood func-
tion for n = 3

Plots of different cases for potential well are shown on Figure 3 – Figure 6.

The graphs are drawn in a half of the potential well with a scaling multiplier
that is equal to 100 in order to have a more clear vision. Potential well is taken
to be ten times the Compton wavelength of the electron.

These graphs are drawn in the whole range of the potential well with a
scaling multiplier that is equal to 100 in order to have a more clear vision.
Potential well is taken to be ten times the Compton wavelength of the electron.

Plots of two different cases for hydrogen atom are shown on Figure 7 and
Figure 8.
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Figure 3: Real Kirkwood func-
tion for n = 1

Figure 4: Real Kirkwood func-
tion for n = 2

Figure 5: Wigner function for
n = 1

Figure 6: Wigner function for
n = 2

4. Conclusions and Comments

The above shown graphical examples of views of the Wigner and Kirkwood
distribution functions (for arbitrary chosen quantum numbers) bear testimony
of the fact that they are not non-negative everywhere over their definition areas.
Because of the existence of some negative values in the quantum distribution
functions they are not considered as true probability distributions in classical
meaning and that is why they are called quasi-distributions. Nevertheless they
have been applied successfully in many branches of the quantum physics, as they
are used as tools of finding average (measurable) values for many quantities as
positions, momentums and energies of particles and systems. Since the quantum
numbers usually range from one to infinity it is neither possible nor necessary
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Figure 7: Real Kirkwood distribution function for the principal state
(n = 1, l = m = 0 ) of the hydrogen atom in dimensionless position-
momentum (x, y) coordinates. Actually, x = 1 is considered to repre-
sent the Bohr radius (first orbital) and y = βk r

Figure 8: Real Kirkwood distribution function for the first exited state
(n = 2, l = 1, m = 0 ) of the hydrogen atom in dimensionless position-
momentum (x, y) coordinates. Actually, x = 1 is considered to represent
the Bohr radius (first orbital) and y = βk r. This graph is drawn again
with a scaling multiplier that is equal to 100 in order to have a more
clear vision.

to look for more examples.

As it is known from the literature there is no negative values for the basic
state of harmonic oscillator if the distribution is calculated via Wigner function,
but Kirkwood function do have some negative values in the same situation. In
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the case of quantum numbers n > 1 both Wigner and Kirkwood functions
do possess negative values. It is clear from the graphs that there exist definite
regions of positive-ness and negative-ness of these functions. They are separated
by the lines of nullifying the corresponding distribution functions (1) – (6). On
Figure 7 the graph of the real Kirkwood distribution function (6) in (x, y) -
coordinates is given, where the values of x are taken to be only positive since
it represents the radial variable in (5). The maximal value of this function
is at the point (x, y) = (0,0) (y = βkr)and it is maxFK = 0,51681. The
minimal value is equal to - 4,52915.10−5 and it is at the point (x, y) = (1,92;
2,16). The fact that Kirkwood function has a maximum at the origin of the
coordinate system is connected with the corresponding representations of the
position and momentum wave functions. Since the wave vectors (momentums)
of the constituents of the electron are uniformly distributed in all directions the
result is that they compensate at the center of the atom. So the integration
of function (5) over the momentums (wave numbers) gives the right quantum-
mechanical distribution in the space.

The stress of the investigation is put on the Kirkwood distribution function
since as it was proved in [9] this function is a critical point (bears extremum
properties) of the entropy-like functional in the space of all quantum distribu-
tion functions.
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