IJPAM: Volume 45, No. 2 (2008)

A GENERALIZATION OF D.W. BRESTER'S FORMULAE

Manuel A. Aguirre$^1$, Emilo A. Aguirre Rébora$^2$
$^{1,2}$Núcleo Consolidado Matemática Pura y Aplicada
Departamento de Matemática
Facultad de Ciencias Exactas
Universidad Nacional del Centro
Tandil, ARGENTINA
$^1$e-mail: maguirre@exa.unicen.edu.ar
$^2$e-mail: emrebora@exa.unicen.edu.ar


Abstract.Let be $\ G=G(x,m)$ defined by $\left(
{\displaystyle\sum\limits_{i=1}^{\mu}}
x_{i}^{2}\right) ^{m}-\left(
{\displaystyle\sum\limits_{i=\mu+1}^{\mu+\nu}}
x_{i}^{2}\right) ^{m}$, where $m$ is integer postive and $\mu+\nu=n$ dimension of the space. In this paper we give a sense to residue of $(c^{2}%
+G)_{+}^{\lambda}$ and $(c^{2}+G)_{-}^{\lambda}$ at $\lambda=-k$, $k=1,2,...$, where $(c^{2}+G)_{+}^{\lambda}$ is defined by ([*]) and $(c^{2}+G)_{-}^{\lambda}$ by ([*]). Our formulae are generalization of the formulae ([*]) and ([*]) due to D.W. Bresters [#!B!#].

Received: February 14, 2008

AMS Subject Classification: 46F10, 46F12

Key Words and Phrases: theory of distributions

Source: International Journal of Pure and Applied Mathematics
ISSN: 1311-8080
Year: 2008
Volume: 45
Issue: 2