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1. Introduction

Consider an R×R contingency table. Let pij denote the probability that an ob-
servation will fall in the i-th row and j-th column of the table (i = 1, . . . , R; j =
1, . . . , R). Generally, we are interested in whether or not the independence be-
tween the row and column classifications holds. The independence (I) model
is defined by

pij = pi+p+j (i = 1, . . . , R; j = 1, . . . , R),

where pi+ =
∑R

t=1 pit and p+j =
∑R

s=1 psj. However, for square contingency
tables with the same row and column classifications, many observations tend to
fall in (or near) the main diagonal cells. Thus, for such a case the independence
between the rows and columns is unlikely to hold. So, we may be interested in
whether or not there is a structure of symmetry in the square table.

The symmetry (S) model is defined by

pij = pji (i 6= j);

see, e.g., Bowker [4], Bishop et al [3, p. 282], and Everitt [5, p. 142]. This
model states that the probability that an observation will fall in cell (i, j) is
equal to the probability that it falls in symmetric cell (j, i). Also, Bishop et al
[3, p. 300] considered the S model for three-way tables. Bhapkar and Darroch
[2], and Agresti [1, p. 440] considered the S model for multi-way tables; see
also Tomizawa and Tahata [9], and Yamamoto et al [10].

McCullagh [6] considered the conditional symmetry (CS) model defined by

pij = ∆pji (i < j);

see also Everitt [5, p. 145] and Tomizawa [7], [8]. A special case of this model
obtained by putting ∆ = 1 is the S model. This model states that the prob-
ability that an observation will fall in cell (i, j), i < j, is ∆ times higher than
the probability that it falls in cell (j, i).

Let xij denote the observed frequency in cell (i, j) of the table with N =
∑ ∑

xij. Assume that {xij} have a multinomial distribution. Let T
(M)
ij denote

the maximum likelihood estimator (MLE) of cell probability pij under model
M .

Bishop et al [3, p. 313] measured the overall variability of the MLEs of {pij}
for the I and saturated (SA) models in terms of the expected mean squared
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error (risk), i.e., for any model M ,

RM =

R
∑

i=1

R
∑

j=1

E(T
(M)
ij − pij)

2 =

R
∑

i=1

R
∑

j=1

[

Var (T
(M)
ij ) + Bias (T

(M)
ij )

]

,

where

Var (T
(M)
ij ) = E[T

(M)
ij − E(T

(M)
ij )]2,

Bias (T
(M)
ij ) = [E(T

(M)
ij ) − pij]

2.

See Appendix A for the details of risks of the MLEs for the I and SA models.
Moreover, Bishop et al [3, p. 313] showed that the MLEs of {pij} for the I
model are always more precise than those for the SA model when the I model
holds.

We are interested (i) in finding and comparing the risks of the MLEs for
the S, CS, and SA models for square tables, and (ii) in finding and comparing
the risks of the MLEs for the S and SA models for multi-way tables.

The purpose of this paper is (i) for square tables, to give the risks of the
MLEs of conditional cell probabilities under the S, CS and SA models on
condition that an observation falls in one of the off-diagonal cells, (ii) to compare
those risks, and (iii) for multi-way tables, to give the similar risks for the S and
SA models and (iv) to compare them.

2. Risks of MLEs for Models in Square Tables

2.1. Conditional Risk

Consider the R × R table. The MLEs of cell probabilities {pij} under the S
model are given by

T
(S)
ij =







xij + xji

2N
(i 6= j),

xii

N
(i = j).

Also, those under the CS model are given by

T
(CS)
ij =



























B(xij + xji)

(B + C)N
(i < j),

C(xij + xji)

(B + C)N
(i > j),

xii

N
(i = j),
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where

B =
∑∑

i<j

xij, C =
∑ ∑

i>j

xij.

Moreover those under the SA model are given by

T
(SA)
ij =

xij

N
(i = 1, . . . , R; j = 1, . . . , R).

We see that the MLEs of cell probabilities {pii} on the main diagonal of the
table under the S and CS models are identical to those under the SA model.
Therefore the risks of the MLEs for the main diagonal cells for three models
(i.e., S, CS and SA models) are the same. So, we are interested in the risks
for the off-diagonal cells for these models. Also it is difficult to find the risk of

{T
(CS)
ij } for the CS model, i.e., RCS.

Let qij denote the conditional probability that an observation will fall in
cell (i, j) of the table on condition that it falls in one of the off-diagonal cells,
i.e.,

qij =
pij

1 −
∑R

s=1pss

(i 6= j).

Using the {qij}, the S model may be expressed as

qij = qji (i 6= j).

Similarly, the CS model may be expressed as

qij = ∆qji (i < j).

Therefore, we are now interested in considering the conditional risks of the
MLEs of {qij} under the SA, S and CS models on condition that an observation
falls in one of the off-diagonal cells. The conditional risk is given by for any
model M ,

Rc
M =

∑∑

i6=j

E(T
c(M)
ij − qij)

2 =
∑ ∑

i6=j

[

Var (T
c(M)
ij ) + Bias (T

c(M)
ij )

]

,

with the MLEs {T
c(M)
ij } of {qij}, i 6= j, on condition that an observation falls

in one of the off-diagonal cells.

2.2. Case of Symmetry Model

The MLEs of {qij} under the SA model on condition that an observation falls
in one of the off-diagonal cells are given by

T
c(SA)
ij =

xij

N∗
(i 6= j),
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where

N∗ = B + C = N −

R
∑

s=1

xss.

Note that then N∗ is fixed. For {T
c(SA)
ij }, the conditional bias term is always

zero, and the conditional risk is

Rc
SA =

1

N∗

∑∑

i6=j

(

qij(1 − qij)
)

=
1

N∗



1 −
∑ ∑

i6=j

q2
ij



 .

Next, the MLEs of {qij} under the S model are given by

T
c(S)
ij =

xij + xji

2N∗
(i 6= j).

We see

E(T
c(S)
ij ) =

1

2
(qij + qji),

on condition that the observation falls in one of the off-diagonal cells. Thus

T
c(S)
ij is a conditional unbiased estimator of qij only when the S model holds

(i.e., when qij = qji, i 6= j). For T
c(S)
ij (i 6= j), we find that the conditional bias

term is

Bias (T
c(S)
ij ) =

1

4
(qij − qji)

2,

and the conditional variance term is

Var (T
c(S)
ij ) =

1

4N∗

(

(qij + qji) − (qij + qji)
2
)

.

Thus, the conditional risk for the S model is

Rc
S =

1

4

∑∑

i6=j

[

1

N∗

{

(qij + qji) − (qij + qji)
2
}

+ (qij − qji)
2

]

.

2.3. Case of Conditional Symmetry Model

We consider the conditional risk of the MLEs of {qij} under the CS model on
condition that an observation falls in one of the off-diagonal cells. Let T ∗ denote
the 2×R(R−1)/2 table constructed using {qij}, i < j, for cells in the upper right
triangle of the table, and {qij}, i > j, for cells in the lower left triangle. Namely,
the first row of table T ∗ is (q12, . . . , q1R, q23, . . . , q2R, . . . , qR−1,R) and the second
row is (q21, . . . , qR1, q32, . . . , qR2, . . . , qR,R−1). The CS model indicates that each
entry in the first row of the table T ∗ is the same multiple ∆ of the corresponding
entry in the second row. Therefore the CS model is equivalent to independence
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for {qij}, i 6= j, in the table T ∗. So, the MLEs of {qij} under the CS model
are given by

T
c(CS)
ij =











B(xij + xji)

N∗2
(i < j),

C(xij + xji)

N∗2
(i > j).

We see

E(T
c(CS)
ij ) =

(

N∗ − 1

N∗

)

Qij(qij + qji) +
1

N∗
qij (i 6= j),

where

Qij =

{

QU (i < j),
QL (i > j),

QU =
∑∑

i<j

qij , QL =
∑ ∑

i>j

qij,

on condition that an observation falls in one of the off-diagonal cells. Thus

T
c(CS)
ij is a conditional unbiased estimator of qij only when the CS model holds,

(i.e., when qij = Qij(qij + qji), i 6= j). For T
c(CS)
ij (i 6= j), the conditional bias

and variance terms are given as

Bias (T
c(CS)
ij ) =

(

N∗ − 1

N∗

)2

(Qij (qij + qji) − qij)
2 ,

and

Var (T
c(CS)
ij )

=
(N∗ − 1)(6 − 4N∗)

N∗3
Q2

ij(qij + qji)
2 + 2

(N∗ − 1)(N∗ − 4)

N∗3
qijQij(qij + qji)

+
(N∗ − 1)(N∗ − 2)

N∗3

(

Qij(qij + qji)
2 + Q2

ij(qij + qji)
)

+
(N∗ − 2)

N∗3
q2
ij

+
(N∗ − 1)

N∗3

(

2qij(qij + qji) + 2qijQij + Qij(qij + qji)
)

+
qij

N∗3
.

Thus the conditional risk for the CS model is obtained by

Rc
CS =

∑ ∑

i6=j

[

Var (T
c(CS)
ij ) + Bias (T

c(CS)
ij )

]

.

2.4. Comparisons Between Risks

From comparing the risks for the SA, S and CS models, we obtain the following
theorems.
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Theorem 1. When the S model holds,

Rc
SA − Rc

S =
1

2N∗
.

Theorem 2. When the S model holds,

Rc
CS − Rc

S =
1

2N∗2
+

2(N∗ − 1)

N∗2

∑∑

i<j

q2
ij.

Theorem 3. When the S model holds,

Rc
SA − Rc

CS =
N∗ − 1

2N∗2

(

1 − 4
∑ ∑

i<j

q2
ij

)

.

Theorem 4. When the CS model holds,

Rc
SA − Rc

CS =
N∗ − 1

N∗2

(

1 −
∑ ∑

i<j

(qij + qji)
2
)(

1 − (Q2
U + Q2

L)
)

.

We see that:

(i) from Theorem 1, when the S model holds, Rc
S < Rc

SA,

(ii) from Theorem 2, when the S model holds, Rc
S < Rc

CS ,

(iii) from Theorem 3, when the S model holds, Rc
CS < Rc

SA because
∑ ∑

i<j

q2
ij < (

∑ ∑

i<j

qij)
2 =

1

4
,

and

(iv) from Theorem 4, when the CS model holds, Rc
CS < Rc

SA because
∑

i<j(qij + qji)
2 <

∑

i<j(qij + qji) = 1 and Q2
U + Q2

L < QU + QL = 1. Thus
from Theorems 1, 2, 3 and 4, we see that when the simpler model is correct,
the overall variability for the estimators based on the simple model is smaller
than for the estimators based on the more complicated model.

3. Risk of MLEs for Symmetry Model in Multi-Way Tables

Consider an RT table. Let pi1...iT denote the probability that an observation
falls in cell (i1, . . . , iT ) of the table (ik = 1, . . . , R; k = 1, . . . , T ). Let xi1...iT

denote the observed frequency in cell (i1, . . . , iT ) of the RT table with N =
∑∑

. . .
∑

xi1...iT . Assume that {xi1...iT } have a multinomial distribution. The
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symmetry (ST ) model is defined by

pi1...iT = pj1...jT
,

for (j1, . . . , jT ) ∈ D(i1, . . . , iT ), where

D(i1, . . . , iT ) = {(j1, . . . , jT )|(j1, . . . , jT ) is any permutation of (i1, . . . , iT )};

see Agresti [1, p. 440]. For example, when T = 3, the S3 model is expressed as

pijk = pikj = pjik = pjki = pkji = pkij (1 ≤ i, j, k ≤ R);

see, e.g., Bishop et al [3, p. 300].

We see that the MLEs of cell probabilities {pss...s} on the main diagonal
of the table under the ST model (i.e., {xss...s/N}, s = 1, . . . , R) are equal to
those under the saturated (SAT ) model. Therefore the risks of the MLEs for
the main diagonal cells of the table for these two models are the same. Thus,
as the case of two-way tables, we consider the conditional risks for these two
models on condition that an observation falls in one of the off-diagonal cells.

Let qi1...iT denote the conditional probability on condition that an observa-
tion falls in one of the off-diagonal cells, i.e.,

qi1...iT =
pi1...iT

1 −
∑R

s=1 ps...s

(

(i1, . . . , iT ) 6= (s, . . . , s), s = 1, . . . , R
)

.

Let

E(r1,...,rT ) = {(i1, . . . , iT )|it = 1, . . . , R; t = 1, . . . , T,where the r1
,s

elements of (i1, . . . , iT ) are equal, r2
,s elements are equal,

. . . , and rT
,s elements are equal},

for (r1, . . . , rT ) ∈ S∗, where

S∗ = {(r1, . . . , rT )|r1 + r2 + · · · + rT = T, T − 1 ≥ r1 ≥ r2 ≥ · · · ≥ rT ≥ 0}.

Note that

E(1,...,1) = {(i1, . . . , iT )|it = 1, . . . , R; t = 1, . . . , T,where all elements of

(i1, . . . , iT ) are different},

(s, s, . . . , s) /∈ E(r1, . . . , rT ) for (r1, . . . , rT ) ∈ S∗, s = 1, . . . , R,

and

∑ ∑

. . .
∑

(r1,...,rT )∈S∗





∑ ∑

. . .
∑

(i1,...,iT )∈E(r1,...,rT )

qi1...iT



 = 1.

The MLEs of {qi1...iT } under the ST model on condition that an observation
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falls in one of the off-diagonal cells are given by, for (i1, . . . , iT ) ∈ E(r1, . . . , rT ),

T
c(ST )
i1...iT

=

∑∑

. . .
∑

(j1,...,jT )∈D(i1,...,iT )

xj1...jT

T Cr1...rT
N∗

,

where

T Cr1...rT
=

T !

r1! . . . rT !
,

N∗ =
∑∑

. . .
∑

not i1=···=iT

xi1...iT = N −
R

∑

s=1

xs...s.

For example, when T = 3

T
c(S3)
ijk =







xiik + xiki + xkii

3N∗
(i = j 6= k),

xijk + xikj + xkji + xjik + xjki + xkij

6N∗
(i 6= j, i 6= k, j 6= k),

where

N∗ =
∑∑ ∑

not i=j=k

xijk = N −

R
∑

s=1

xsss.

In a similar manner to the case of two-way tables, we obtain the following
results. For (i1, . . . , iT ) ∈ E(r1, . . . , rT ), the conditional bias term on condition
that an observation falls in one of the off-diagonal cells, is

Bias (T
c(ST )
i1...iT

) =







∑∑

. . .
∑

(j1,...,jT )∈D(i1,...,iT )

qj1...jT

T Cr1...rT

− qi1...iT







2

,

and the conditional variance term is

Var (T
c(ST )
i1...iT

) =
1

(T Cr1...rT
)2N∗

×





∑∑

. . .
∑

(j1,...,jT )∈D(i1,...,iT )

qj1...jT
−





∑∑

. . .
∑

(j1,...,jT )∈D(i1,...,iT )

qj1...jT





2

 .

For example, when T = 3 we find that the bias term is

Bias (T
c(S3)
ijk ) =



















(qiik + qiki + qkii

3
− qijk

)2
(i = j 6= k),

(qijk + qikj + qkji + qjik + qjki + qkij

6
− qijk

)2

(i 6= j, i 6= k, j 6= k),
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and the variance term is

Var (T
c(S3)
ijk ) =







































1

9N∗

[

(qiik + qiki + qkii) − (qiik + qiki + qkii)
2
]

(i = j 6= k),
1

36N∗

[

(qijk + qikj + qkji + qjik + qjki + qkij)

−
(

qijk + qikj + qkji + qjik + qjki + qkij

)2
]

(i 6= j, i 6= k, j 6= k).

Thus the conditional risk of MLEs of {qi1...iT } for the ST model on condition
that an observation falls in one of the off-diagonal cells is obtained by

Rc
S =

∑ ∑

. . .
∑

(r1,...,rT )∈S∗





∑ ∑

. . .
∑

(i1,...,iT )∈E(r1,...,rT )

(

Var (T
c(ST )
i1...iT

) + Bias (T
c(ST )
i1...iT

)
)



 .

Also, the MLEs of {qi1...iT } under the SAT model are given by

T
c(SAT )
i1...iT

=
xi1...iT

N∗

(

(i1, . . . , iT ) 6= (s, . . . , s), s = 1, . . . , R
)

.

The conditional risk is

Rc
SA =

1

N∗





∑∑

. . .
∑

not i1=···=iT

qi1...iT (1 − qi1...iT )





=
1

N∗



1 −
∑∑

. . .
∑

(r1,...,rT )∈S∗





∑ ∑

. . .
∑

(i1,...,iT )∈E(r1,...,rT )

q2
i1...iT







 .

Noting that when the ST model holds, for (i1, . . . , iT ) ∈ E(r1, . . . , rT ),
∑∑

. . .
∑

(j1,...,jT )∈D(i1,...,iT )

qj1...jT
= T Cr1...rT

qi1...iT ,

and the bias term for the ST model equals zero, we obtain the following theorem.

Theorem 5. For the RT tables, when the ST model holds,

Rc
SA − Rc

S =
1

N∗

∑ ∑

. . .
∑

(r1,...,rT )∈S∗





T Cr1...rT
− 1

T Cr1...rT

∑∑

. . .
∑

(i1,...,iT )∈E(r1,...,rT )

qi1...iT



 .

For example, from Theorem 5 with T = 3, when the S3 model holds, we
obtain

Rc
SA − Rc

S =
1

N∗





2

3

∑∑

i6=k

(qiik + qiki + qkii) +
5

6

∑∑ ∑

i6=j 6=k

qijk




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=
1

N∗



2
∑ ∑

i6=k

qiik + 5
∑ ∑ ∑

i<j<k

qijk



 .

Note that Theorem 5 with T = 2 is identical to Theorem 1.

From Theorem 5 we find Rc
S < Rc

SA when the ST model holds. Thus we

know that {T
c(ST )
i1...iT

} are always more precise than {T
c(SAT )
i1...iT

} when the ST model
holds.

4. Concluding Remarks

For square tables, we gave the conditional risks of the MLEs of conditional
probabilities {qij} under the S, CS, and SA models on condition that an ob-
servation falls in one of the off-diagonal cells. Also, for multi-way tables, we
gave the conditional risks of the MLEs of conditional probabilities {qi1...iT } un-
der the ST and SAT models. By comparing the risks between the models, we
obtained that when the simpler model is correct, the overall variability for the
estimator based on the simple model is smaller than for the estimator based on
the more complicated model.

Many readers may be interested in the unconditional risks of the MLEs (i.e.,

{T
(S)
ij } and {T

(CS)
ij }) of cell probabilities {pij} under the S and CS models. We

point out that the risk of the MLEs of {pij} for the S model could be obtained
easily (in a similar way to Rc

S) as

RS =
1

4

∑ ∑

i6=j

[

1

N

{

(pij + pji) − (pij + pji)
2
}

+ (pij − pji)
2

]

+
1

N

R
∑

i=1

pii(1 − pii);

but it would be difficult to obtain the unconditional risk for the CS model.

Finally we note that the CS model is defined for square tables, but it is
difficult to consider the similar model for multi-way tables.
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Appendix A

For an R×R table, the MLEs of cell probabilities {pij} under the I model are
given by

T
(I)
ij =

xi+x+j

N2
(i = 1, . . . , R; j = 1, . . . , R),

where xi+ =
∑R

t=1 xit and x+j =
∑R

s=1 xsj. Those under the SA model are
given by

T
(SA)
ij =

xij

N
(i = 1, . . . , R; j = 1, . . . , R).

Referring Bishop et al [3, p. 314], we see that for {T
(SA)
ij }, the bias term is

always zero, and the risk for {T
(SA)
ij } is given by

RSA =
1

N



1 −

R
∑

i=1

R
∑

j=1

p2
ij



 .

Also, the risk for {T
(I)
ij } is given by

RI =

R
∑

i=1

R
∑

j=1

[

Var (T
(I)
ij ) + Bias(T

(I)
ij )

]

,

where

Var (T
(I)
ij ) =

(N − 1)(6 − 4N)

N3
p2

i+p2
+j + 2

(N − 1)(N − 4)

N3
pijpi+p+j

+
(N − 1)(N − 2)

N3
(pi+p2

+j + p2
i+p+j) +

(N − 2)

N3
p2

ij

+
(N − 1)

N3
(2pijp+j + 2pijpi+ + pi+p+j) +

pij

N3
,

Bias (T
(I)
ij ) =

(

N − 1

N

)2

(pi+p+j − pij)
2,

pi+ =

R
∑

t=1

pit, p+j =

R
∑

s=1

psj.
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