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1. Notations and Preliminaries

We consider the differential system

x
′

(t) = (a(t)An + b(t)En)x(t), (1)

where a(t), b(t) ∈ C0(J =< t0,∞), R), a(t) 6= 0 for all t ∈ J , En is the identity
matrix and for the matrix An are ai1 = −1, a1i = ani = ain = 1, if i =
1, 2, . . . , n − 1 and the others aij = 0,j = 1, 2, . . . , n,n ∈ N,n ≥ 3. We denote
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g1(t, x(t)) = b(t)x1 + a(t)
n−1
∑

j=2

xj ,

gi(t, x(t)) = b(t)xi + a(t) (−x1 + xn) , if i = 2, 3, . . . , n − 1,

gn(t, x(t)) = b(t)xn + a(t)

n−1
∑

j=2

xj.

Here one and only one integral curve of the system (1) passes through ev-
ery point (t, x(t)) ∈ J × Rn, because the partial derivatives ∂gi/∂xj , i, j ∈
{1, 2, . . . , n} are the continuous functions [6].

We apply to the system (1) the new method for determined the fundamental
matrix.

We denote the matrix

Dn(t) = a(t)An + (b(t) − λ(t))En. (2)

Definition 1. The function λ(t) which is the solution of the auxiliary
equation |Dn(t)| = 0, is called the eigenfunction of the system (1), see [2].

Theorem 2. Let the function λ(t) is the eigenfunction of the matrix
system (1), then for every n ∈ N,n ≥ 3; |Dn(t)| = (b(t) − λ(t))n.

Proof. According to (2), we can write

|Dn(t)| =

∣

∣

∣

∣

∣

∣

z(t) bn−2(t) 0
−bT

n−2
(t) z(t)En−2 bT

n−2
(t)

0 bn−2(t) z(t)

∣

∣

∣

∣

∣

∣

,

where z(t) = b(t) − λ(t) and bn−2(t) = a(t)(1, 1, . . . , 1) ∈ Rn−2. Moreover

|Dn(t)| =

∣

∣

∣

∣

∣

∣

z(t) bn−2(t) 0
−bT

n−2
(t) z(t)En−2 bT

n−2
(t)

0 bn−2(t) z(t)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

z(t) bn−2(t) 0
0 z(t)En−2 bT

n−2
(t)

z(t) bn−2(t) z(t)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

z(t) bn−2(t) 0
0 z(t)En−2 bT

n−2
(t)

0 0 z(t)

∣

∣

∣

∣

∣

∣

= z2(t) |z(t)En−2| = zn(t) = (b(t) − λ(t))n . �

Theorem 3. For every n ∈ N , n ≥ 3; A3
n = On.

Proof. For the matrix An it follows

An =





0 In−2 0
−IT

n−2
On−2 IT

n−2

0 In−2 0



 ,
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where In−2 = (1, 1, . . . , 1) ∈ Rn−2, On−2 is the square zero matrix. Denote
on−2 = (0, 0, . . . , 0) ∈ Rn−2. Then

A2

n =





0 In−2 0
−IT

n−2
On−2 IT

n−2

0 In−2 0









0 In−2 0
−IT

n−2
On−2 IT

n−2

0 In−2 0





=





2 − n on−2 n − 2
oT
n−2

On−2 oT
n−2

2 − n on−2 n − 2



 ,

A3

n =





2 − n on−2 n − 2
oT
n−2

On−2 oT
n−2

2 − n on−2 n − 2









0 In−2 0
−IT

n−2
On−2 IT

n−2

0 In−2 0





=





0 on−2 0
oT
n−2

On−2 oT
n−2

0 on−2 0



 .

The proof of Theorem 3 is complete.

2. New Results

Theorem 4. Let is denote the system (1). If we denote P0 = En, P1 =
An, . . . , Pm−1 = Am−1

n , m = n − 1 and

q1(t) = exp

∫ t

t0

b(s)ds,

q2(t) =

∫ t

t0

a(s1)ds1 exp

∫ t

t0

b(s)ds,

...

qm(t) =

∫ t

t0

∫ sm−1

t0

. . .

∫ s2

t0

m−1
∏

i=1

a(si)ds1ds2 . . . dsm−1 exp

∫ t

t0

b(s)ds,

then the fundamentally matrix of system (1) has the form

U(t) = q1(t)P0 + q2(t)P1 + · · · + qm(t)Pm−1, (3)

and the general solution of the system (1) is

x(t) = U(t)C,

where C = (c1, c2, . . . , cn)T is a constant vector.

Proof. According to Theorem 2, for eigenfunctions of system (1) it follows
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λ1(t) = λ2(t) = · · · = λn(t) = b(t). The functions

q1(t) = exp

∫ t

t0

b(s)ds,

q2(t) =

∫ t

t0

a(s1)ds1 exp

∫ t

t0

b(s)ds,

...

qm(t) =

∫ t

t0

∫ sm−1

t0

. . .

∫ s2

t0

m−1
∏

i=1

a(si)ds1ds2 . . . dsm−1 exp

∫ t

t0

b(s)ds,

are the solutions of differential equations (see [1])

q,
1
(t) = b(t)q1(t), q1(t0) = 1,

q,
2
(t) = b(t)q2(t) + a(t)q1(t), q2(t0) = 0,

...
q,
m(t) = b(t)qm(t) + a(t)qm−1(t), qm(t0) = 0.

We shall prove, that the matrix U(t) =
m
∑

i=1

qi(t)Pi−1 is the fundamentally matrix

of system (1). Differentiating the equation (3) we get

U
′

(t) =
m

∑

i=1

q,
i(t)Pi−1 = b(t)q1(t)P0 +

m
∑

i=2

(b(t)qi(t) + a(t)qi−1(t))Pi−1

= b(t)

m
∑

i=1

qi(t)Pi−1 + a(t)

m−1
∑

i=1

qi(t)Pi = b(t)U(t) + a(t)

m
∑

i=1

qi(t)Pi.

According to Theorem 3 it follows Pm = Pm−1P1 = Am
n = On. Then

U
′

(t) = b(t)U(t) + a(t)P1

m
∑

i=1

qi(t)Pi−1 = (b(t)P0 + a(t)P1)U(t), hence U is the

fundamental matrix of system (1), i.e. the columns of matrix U are the linear
independent solutions of differential system (1). The general solution of system
(1) has the form [3]

x(t) = U(t)C ,

where C = (c1, c2, . . . , cn)T is a constant vector.

The proof of Theorem 4 is complete.
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3. Example

We consider the differential system








x1(t)
x2(t)
x3(t)
x4(t)









,

=









b(t) a(t) a(t) 0
−a(t) b(t) 0 a(t)
−a(t) 0 b(t) a(t)

0 a(t) a(t) b(t)

















x1(t)
x2(t)
x3(t)
x4(t)









, (4)

where a(t), b(t) ∈ C0(J =< t0,∞), R), a(t) 6= 0 for all t ∈ J .

By generalized the method of the eigenvalue and eigenvector for the linear
differential system with the constant coefficients the integral equations system
is expressed and is equipollent with the system (4).

We denote the matrix of the system (4) as follows

B(t) =









b(t) a(t) a(t) 0
−a(t) b(t) 0 a(t)
−a(t) 0 b(t) a(t)

0 a(t) a(t) b(t)









.

The function λ(t) which is the solution of the equation det(B(t)−λ(t)E4) =
0, where E4 is the identity matrix, we shall call eigenfunction of system (4).

The vector function h(t) which is the solution of the equation

(B(t) − λ(t)E4)h(t) = 0,

is called own vector function related to own function λ(t) of system (4).

Theorem 5. The general solution of system (4) has the form x(t) =
(

ξ1(t), ξ2(t), ξ3(t), ξ4(t)
)

C, where C = (c1, c2, c3, c4)
T is a constant vector and

the vector functions ξ1(t), ξ2(t), ξ3(t), ξ4(t) is

ξ1(t) =
(

(1, 0, 0, 0)T + (0,−1,−1, 0)T
∫ t

t0

a(s)ds

+ (−2, 0, 0,−2)T
∫ t

t0

(

a(s)

∫ s

t0

a(u)du

)

ds
)

exp

∫ t

t0

b(s)ds,

ξ2(t) =

(

(0, 1, 0, 0)T + (1, 0, 0, 1)T
∫ t

t0

a(s)ds

)

exp

∫ t

t0

b(s)ds,

ξ3(t) =

(

(0, 0, 1, 0)T + (1, 0, 0, 1)T
∫ t

t0

a(s)ds

)

exp

∫ t

t0

b(s)ds,

ξ4(t) =
(

(0, 0, 0, 1)T + (0, 1, 1, 0)T
∫ t

t0

a(s)ds
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+ (2, 0, 0, 2)T
∫ t

t0

(

a(s)

∫ s

t0

a(u)du

)

ds
)

exp

∫ t

t0

b(s)ds.

Proof. The eigenfunctions of the system (4) are λ1234(t) = b(t). We con-
struct matrix sequence

P0 = E4 ,

P1 =(B(t) − b(t)E4)/a(t)=









0 1 1 0
−1 0 0 1
−1 0 0 1

0 1 1 0









, P2 =P 2

1 =









−2 0 0 2
0 0 0 0
0 0 0 0

−2 0 0 2









,

and consider the differential equations

q,
1
(t) = b(t)q1(t), q1(t0) = 1, (5)

q,
2
(t) = b(t)q2(t) + a(t)q1(t), q2(t0) = 0, (6)

q,
3
(t) = b(t)q3(t) + a(t)q2(t), q3(t0) = 0. (7)

The solutions of the differential equations (6), (7) and (8) are functions

q1(t) = exp

∫ t

t0

b(s)ds, (8)

q2(t) =

∫ t

t0

a(s)ds exp

∫ t

t0

b(s)ds, (9)

q3(t) =

∫ t

t0

(

a(s)

∫ s

t0

a(u)du

)

ds exp

∫ t

t0

b(s)ds. (10)

We shall prove, that the matrix

U(t) = q1(t)P0 + q2(t)P1 + q3(t)P2 (11)

is the fundamental matrix of the system (4). Differentiating the equation (11),
we obtain
U

′

(t) = q,
1
(t)P0 + q,

2
(t)P1 + q,

3
(t)P2 = b(t)q1(t)P0 + (b(t)q2(t) + a(t)q1(t))P1 +

(b(t)q3(t) + a(t)q2(t))P2 = b(t)(q1(t)P0 + q2(t)P1 + q3(t)P2) + a(t)(q1(t)P1 +
q2(t)P2) = b(t)U(t) + a(t)(q1(t)P1 + q2(t)P2 + q3(t)P3), where P3 = P2P1 = 0.

Since U
′

(t) = b(t)U(t) + a(t)P1(q1(t)P0 + q2(t)P1 + q3(t)P2) = (b(t) +
a(t)P1)U(t) = B(t)U(t), the matrix U is the fundamental matrix of system
(1), i.e. the columns of matrix U are the linear independent solutions of differ-
ential system (4). The general solution of system (4) has the form

x(t) = U(t).C ,

where C = (c1, c2, c3, c4)
T is a constant vector. The proof is complete.

The authors have investigated system of quasilinear differential equations
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with matrix A =





0 a12 a13

−a12 0 a23

−a13 a23 0



, where aij 6= 0, 1 ≤ i < j ≤ 3 are real

numbers (see [4]). In the paper [5] is investigated system of linear differential

equations with matrix A =





0 1 0
−1 0 1

0 1 0



. The asymptotic and oscillatory

properties of solutions of the non-linear differential systems are investigated in
the paper [10].
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