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Abstract: A bounded operator with the spectrum lying in a compact set V' C
R, has C*°(V) functional calculus. On the other hand, an operator H acting on
a Hilbert space H, admits a C'(R) functional calculus if H is self-adjoint. So in
a Banach space setting, we really desire a large enough intermediate topological
algebra A, with C§°(R) C 2 C C(R) such that spectral operators or some sort
of their restrictions, admit a 2 functional calculus.

In this paper we construct such an algebra of smooth functions on R that
decay like (v/1+ 22)8 as pf — oo, for some 3 < 0. Among other things, we
prove that C°(R) is dense in this algebra. We demonstrate that important
functions like x — e” are either in the algebra or can be extended to functions
in the algebra. We characterize this algebra fully.
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1. Preliminaries

For 3 € R, we define &° to be the space of smooth functions f : R — C such
that for each r > 0 there exists ¢, > 0 so that

Received: February 21, 2009 © 2009 Academic Publications

§Correspondence author



164 P.O. Oleche, N. Omolo-Ongati, J.O. Agure

) @) o= dci; f@) <o @i, allzeR (1.1)

Remark 1.1. 1. Observe that 6°&7 C 6717 for all 3,7 € R.
2. If f € &7 then so is f where f(2) := f(z) for all z € C.

Define the translation operator 1. on the space of functions f : R — C by
Tef(x) == f(x+¢€) forall z € R and some € € R. Then we have the following
lemma.

Lemma 1.2. For § < 0, the space &° is invariant under translation . for
e > 0.

Proof. Let f € &% then by (1.1) we can find ¢, > 0 such that

'dci"r flz) <cr @ﬁﬂn, for all z € R.
But  |[Lrf@) = e fte
u d.TTTG ) = T T+ €

IN

¢ &+ 67" by use of the chain rule.

erefore r=8 iT x c il T
Theretore (4" [Forf(o) < e ()

r—0
with ( @@@) bounded on R and the bound goes to 1 as e — 0, see Figure 1.

r—03
Now set D, := ¢, sup ( @@6)) , then we have
z€R

<D @,z eR.

dr
@Tef(x)

Thus 7.f € &°. O
Theorem 1.3. The space
A 1= UgoB&” (1.2)

is an algebra under pointwise multiplication.

Proof. Let f,g € A and o, A\ € C. Then f,g € C*°(R) and we can find
CfnsCgm € (0,00) such that
dn

ool < 22

dar Ctn
daj—”f(x)' < W and
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Figure 1: Graphs of ( (x@ 6>> for various €’s

for some (31,32 < 0 and all n > 0. So we have

n n

mn mn d
C;i—n(af(:z:) + Ag(z)) = aCZ:—nf(:zr) + )\di—ng(:z:) (by linearity of @)

Therefore

O (af(x) + Age) -

dn
= b0+ A gate)

O o [ L e

@ @y
< % (where (3 := max{f31, 52})
Cf+gmn

= —= Cfygn >0, <0 forall n>0.

@
Therefore af + Ag € A, showing that 2 is linear.
Next, by the Leibniz rule,
d'ﬂ
—— (f(x)g(x))

dz™

n

> s e @ @

n —1)! da’ an—

1=

< Z C; <x>,6’1—i @ﬁz—(n—i)
1=0
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n!
il(n —1)!

_ <T>ﬁ1+ﬂ2—n Z C;
1=0

= d, @7 g, > 0.
Thus fg € A O (1.3)
Definition 1.4. The support of f is the set
supp (f) :={z € R : f(z) # 0}.

This notion of support of a function will feature prominently in the rest of
our work.

[ where C; := max(cy, Cgn—i) |

The algebra 2 contains the sub-algebra C°(R) of all smooth functions with
compact support. The completions 2, of A or C2°(R) with respect to the norms

.:n oo(r)m =1 gy '
1A, : ;/m‘f (@) 4 d (14)

are also algebras under pointwise multiplication, and much of what we prove
below could be extended to these spaces. In fact we have the following.

Lemma 1.5. The space C2°(R) is dense in 24 for each norms |, ;-

Proof. Suppose that f € &P for some 3 < 0. Let ¢ € C2° such that
1, <1,
¢(S)_{ 0, i§>2.
Set ¢ (s) := ¢(s/m) and fp, := ¢ f. If n > 1 then

IF = Fulls = i it
St

by the Leibniz formula.

— Gl }‘ @ de.

drfk
!

IA

— b)) @) da,

@)

We make the following observations:

1. For k=1,
k r—k r
@) - en@)] 0 = E ) - o 7

< @ bl @
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= ¢l — ¢m(z) @WP!  for some ¢ € (0,00).

2. supp ((Z;—ii(l—qu(m))) C{z : m < W < 2m} for £ < r, while
supp (1 — ¢m(x)) C{z : pf > m}.
3. For s > 1 we have the bound,

d* _ _
T (1= () < e xon(®) < &) xom(®)
valid for m > 2, where y,, is the characteristic function of
{z : m <} <2m}.

4. From 1, we conclude that ‘% f (ac)‘
for0 <k <.

These yield

d'rfk

(1= dm(@) @ < e @7 xm

n+1

If = frllpyr < EZ/ @)ﬁfl dx for some ¢ >0
r=0 h?|>m

which converges to 0 as m — oo. U

It is important for application that the functions in 2 need not be R-
integrable.

2. Functions that Lie in A

Definition 2.1. Let By(R) denote the space of bounded complex valued
functions on R with the uniform norm. A set § C B(R) is said to distinguish
between points of R if for each pair s,t € R with s # ¢, there is a function f € §

such that f(s) # f(t).

Lemma 2.2. (Stone-Weierstrass Theorem) Let § be a closed sub-algebra
of Cy(R), with the supremum norm |||, and closed with respect to complex
conjugation. Then § = Cy(R) if and only if § distinguishes between points of R
and for each finite point of R, contains a function which does not vanish there.

Proof. See for example Dunford and Schwartz [2, p. 274]. O
Example 2.3. Let w € C\ R and set 7, := ——, € R then r, € 2.

w—x’

Indeed

n n!
Zon ") = T et

showing that r,, is smooth on R.

forall n>0
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Next,
dr n! 20121 fuy "1
d—nrw(x) = n+1 < n+1
33 w — 4 (VBo @)
n! (\/5 <w>)n+1 —1-n
= W @) for all z € R, and all n > 0. (2.1)
With £y € (0,1 — @u)~ ") in this case.

Thus 1, € 671 C 2. O

Corollary 2.4. 2 is dense in Cy(R) with respect to uniform norm.
Proof. Note that 2 is closed with respect to complex conjugation, see
Remark 1.1.
For z,y € R,
x#y = ry(x) #ry(y) for some w ¢ R.

But from Example 2.3, r, € 2 for all w ¢ R. Thus A distinguishes points
of R. Therefore by Stone-Weierstrass Theorem (Lemma 2.2), 2 = Cy(R) with
respect to the uniform norm. O

We are now in a position to prove the following perturbation result:
Lemma 2.5. If f € 2 and c,w € C with Sw # 0 then (x + ¢)(w —
2) U (fHo(w—z)t et
Proof.
(z+c)w—z)  f={-14(c+w)(w—2)"'}f=—f+(c+w)ryf
(where 7, := (w — x)~1), and
(f+O)(w—2)"" = fry+cre.
Hence the result follows from Example 2.3 and Theorem 1.3. U
Theorem 2.6. For an arbitrary t € R and f € 2, define ft by
, HO=1@) sy
fie)=q e TT
(), x=t.
Then ft e

Proof. For x # t,
; e m!
@) = 3 g @ =l - )t
2 Kl — )

+Hm) f()(t —2) 7 (=)™
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Thus
s @)

IN

5 e e~ g
k:O
< e (3 g e

b
PR <Z o @7 @ e <t>ﬁ)
_|_

IN

(
2 1(m — k)

m!
m!
0
(Using @+ <20 @)
m. Ui C k
< W‘ml ((ﬂf>ﬁz_:z—!2(<t>k+cm<t>ﬁ> s FEt

d @, @

< (dp+d,)@ 1™ since § < 0.
Next, the fact that f € C°°(R) implies that there exists a function f,,,, contin-
uous on some neighbourhood (t — d,,,t + ), I > 0; of t such that

(m) ()— f(m)
(@), z=t.

IN

From Taylor’s expansion

Y ¢
10 = 1)+ (- o) @)+ E5 ) + 5 [ - 0P

f(t) = f(x) ot (t—x) ., 1 ! "
B0 pw + 5520w + s [ =02 Wy
Therefore
(1) fi(t) = ful)
£ = lim e
. f/(t) . f(ti:i(if)
x—t t—x
T f,(t) - f,(x) L.y 1 ! "
= ilg(W—gf (w)—m/gg t—y)>2f"(y )dy>
= 1)

Inductively, £ ™ (1) = (mil)!f(m“)(t).
Consider [t —€,t + €] C (t — 6, t + ) for some € : 0 < € < J,. Then:
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1. fm and ft(m) are continuous and bounded on [t — €, + €.
2. (m+ DU (1) = fult) = FO ().

Because of continuity of ft(m) and f(™*t1) | we can find p,, € R such that

A (@)

IN

‘f(erl)(x)‘ + pm, onft —et+ €
< Cmpr @7 o
which implies ™' [f™ @) < e + ol @7

Since (™' is continuous on [t —e, t+¢], it is bounded and attains its bounds
there. Let ¢/, | := ¢py1 + Jon]  max {@)mﬂ*ﬁ} . Then

TE[t—e,t+e]
@) < @
< @™ (since B < 0 and (@) > 1)
rEt—et+e.
Thus f; € L. O

3. Extensions of C°°(][0,00)) Functions to R

We next present a series of results about smooth functions initially defined on
the half real line but extendible to the whole real line. In particular we wish to
obtain an extension preserving the decay condition (1.1).

Lemma 3.1. There are sequences {ay}, {bx} such that:
1. by <0 for all k.

2.3 okl b < o0, m=0,1,2,....

3. > v ak(by)*=1forn=0,1,2,....

4. b, — —cc ask — oo.

Proof. see Seeley, [5]. O

Theorem 3.2. (Seeley) Let ¢ € C°°(R) be such that ¢ is bounded on R
and
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Define E : C*°([0,00)) — COO(]R) by

Here {ay}, {br} are the sequences described in Lemma 3.1.

Then E is a continuous linear extension operator.

Proof. Again, see Seeley, [5]. O
Lemma 3.3. If f € C*°(R") with

dr

@) <@ (3.1)

for some 3 < 0, all > 0 and for all = > 0, then Ef € &% c U, where F is
Seeley’s extension operator.

Proof. Using notations of Theorem 3.2 and Lemma 3.1, first observe that
oY) (b vanishes everywhere except on the set
Q:={x : 1 <bax <2} So for T 6 Q, we have 1 < (bpr)? < 4 whence
2 <1+ (bpw)? <5 or equivalently - f (b g < \1[ So we can find a constant
n, such that ¢p2)° " < n, (b;@)ﬁ " ﬂ <0andall 0 <v <r. Thus

dT

—(Ef)@) < Z i Z T P ) [ o)
< Z sl bAl" Z I ‘¢(T Y (b)) e bra)”
< Z x| bil" M, Z cony b’ forall z <0,

k=0 v
where
- (r+1)! r—v
M= 0L { viir —v)! <o | )(bkaj)‘}

< 0o, since ¢ is bounded on R for all m.

Next, since b, — ooaskeoowecanﬁndceRsuchthat< > %f

all k and hence @) = < bkm> < f< > bry) < épra). Thus

1 ¢
—— < — forall x€R and all b
bra) )

implies ¢p2)° " < @ P @ forall z € R, and all k,v € N.
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So we can choose ¢ so that

r- max (c)ne G’ " < AE P @Y forall e R
0<v<r

and hence,
d?‘
dx”

(Ef)(x)

IN

[o¢]
> b bl M E P @
k=0

IN

&P @7 bl
k=0

= N, @ ", 2<0 andsomeN, >0 (3.2)
after summing up the series which converges by Lemma 3.1.
Now set D, := max{¢,, N, } then

dT’

E
- ENE
for some D, > 0, for all » > 0 and for all z € R. That is Ef € &7 c 2. O

Theorem 3.4. Let f € C®°(R") satisfying (3.1) and define |||} by

1717 = g | o) et

<D, @

Then
IEA,, < en A

for some ¢, > 0 (where E is Seeley’s extension operator defined in Theorem 3.2).

Proof.

A, = 2‘6 Lol as [ o] o).

r=

where
(e}
F(x) =) apd(bpx)f (bpz).
k=0
Therefore
FOl(z) = iak g ! ¢ o(brx) & f(bgz)
vi(r —v)ldar—v dxv
k=0 v=0
> - T! T—V r—v v v
= D ar), ok ) (b )by ) ()

il
o
AN
Il
o
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= D k) @ k) (i)
k=0 v=0
Also,
r—1 /p2a\ "1
@ de < —%:Z_l <<g—’;‘> _ibkdwkx)
b D\

using second part of Lemma 3.1. Thus

A, = |Lf||:+i{ /0

) @ dw}

0
< MY b Z e / B ()
r=0 k=0
) (b2 < > (bk$> - .

f(l/ 1/71 dt

< IVII++;M Zh|<w> Z/

! v
(where M; .= Orgz?%(r{y!(rr— v)! 220 (r_y)(bki‘) bra)" ‘} < 00,
since O () pp)™ =0 for all m and all = : by > 2).
That is
EA, < W+ ZM [N Z fad <|b—k>
< ||ﬂ|+(1+n)L Hf||+
e 1 (oS (DY
where Ly, = max Z|a| ™
But

() - ;%>>f

1

b—2>—>1ask:—>ooand
k

Since b, — —oo0 as k — 00, we have <
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—> < 1 for any k. Therefore we can find a constant N, > 0 such that

T
' < 1 > < N, for all k£ and hence

[ee)
Ln < max (MrNr kz_o o |bk\r>
( < o© by Lemma 3.1.)
So,

IEAL, < ea Al (3.3)
with ¢, =14+ (n+ 1)L, O

Example 3.5. Let f(z) := e @', t > 0, integer n > 1. Then Ef € &,
where E is Seeley’s extension operator.

Indeed,
fz) - up <coasxz — 0 forall r>0. (3.4)
Thus by Theorem 3.2 Ef € C*(R).
Further,

FO@) =Y erp(m) (-1t T f (@), v =1,
k=1

where e, ;,(n) € Z is defined by
[T, -5(n—s), ifh=1,
enk(n) = n’, if k=r,
(nk—r+1)e,_1k(n) +ne,—q1p—1(n), f2 <k<r—-1.
Therefore for x > 1, and » > 1

@] = 3 et
k=1

e T (a) S 8
k=1

r—1 1

= " TI@IE Y] (3.5)

k=0

f ()

IN

with ¢, = 1121]?2“ {er,kz(n)}
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Also by means of Taylor series expansion,
(r+1)!

— nt
lf(l‘:‘ :B‘_W x>0, r>0. (3.6)
Substituting (3.6) into (3.5) and using é = <1</>> < % for x > 1 we get,
(r) nr—r (T + 1) ZZ -
‘f (37)‘ S ¢ |$| 1 Ix‘n r+n
| r—1 k
= CT(T+1)Z . ", z>1
GRaAD v Ty () K
< t o
= d. @ """, r>1
From (3.6) and comments following it we can set dy := (\/f)n.
For the case x < 1, since f(")(x) is bounded on [0, ] for all r >0,
O] < sup [ = o)
z€[0,1]
(with I = [0,1]).

But then we can find a constant M, > 0 such that

‘f(r)l < dTM{, @>—n—r’ = I,
since 1 < ) < /2 for x € [0,1]. Now set
pri=d,max{1,M}, r>0, (3.7)
whence
‘f(r)(l‘)‘ <p- @ """ forall z € [0,00); 7r>0. (3.8)
Thus by Lemma 3.3, Ef €¢ 67" C 2. O

Remark 3.6. Note that if ¢ > 1, then the constant d, (and hence p,),
does not depend on ¢, since in this case
+ -1,
(r+ D' (v2)" it
t

n+r
CTT(T i 1)!t(\/§) <c¢r(r+1)! (\/§)n+r

d, = ¢

d/

re
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