International Journal of Pure and Applied Mathematics

Volume 55 No. 1 2009, 105-108

GONALITY OF REDUCED CURVES ON A SMOOTH SURFACE WITH GENERICALLY SPANNED ANTICANONICAL LINE BUNDLE

E. Ballico

Department of Mathematics University of Trento 38 123 Povo (Trento) - Via Sommarive, 14, ITALY e-mail: ballico@science.unitn.it

Abstract: Here we consider reduced curves on a smooth projective surface S whose anticanonical is generically spanned (e.g. Hirzebruch surfaces) and study their gonality using an extension method due to T. Gomez.

AMS Subject Classification: 14H20, 14H51

Key Words: torsion free sheaf, gonality, anticanonical surface

*

Our main aim is to introduce the following set-up. Let X be a reduced projective curve, F a depth 1 sheaf on X with pure rank 1 (see [6], Chapters VII and VIII) and V a non-zero linear subspace of $H^0(X,F)$. Let $G_{(F,V)} \subseteq F$ denot the image of the evaluation map $e_{F,C}: V \otimes \mathcal{O}_X \to F$. Since $V \neq \{0\}$, $G_{(F,V)} \neq 0$. Since F has depth 1, its subsheaf $G_{(F,V)}$ has depth 1. Since F has pure rank 1, the support $X_{(F,V)}$ of $G_{(F,V)}$ is a non-empty subcurve of X. An irreducible component T of X is contained in $X_{(F,V)}$ if and only if for a general $P \in T$ there is $s \in V$ such that $s(P) \neq 0$. The curve $X_{(F,V)}$ is called the support of the pair (F,V). The sheaf $G_{(F,V)}$ is called the shadow of the pair (F,V). Set $X_F := X_{(F,H^0(X,F))}$ and $G_F := F_{(F,H^0(X,F))}$. The sheaf G_F is called the shadow of F. The curve $X_{(F,V)}$ may be disconnected even if X is connected. Notice that F is spanned if and only if the natural inclusion $G_F \to F$ is surjective and

Received: July 5, 2009 (c) 2009 Academic Publications

106 E. Ballico

that this is the case (for degree reasons) if and only if the sheaves G_F and F are isomorphic as \mathcal{O}_X -sheaves. We say that F is generically spanned if $X_F = X$. From now on we assume that X is Goenstein. Hence local duality gives that every depth 1 sheaf on X is reflexive. We say that F is primitive if both F and $\omega_X \otimes F^*$ are spanned. We say that F is generically primitive if both F and $\omega_X \otimes F^*$ are generically spanned. For any generically primitive F set $F_- := G_G$, where $G := (\omega_X \otimes (G_F)^*)_{\omega_X \otimes (G_F)^*}$.

Lemma 1. Let F be a generically primitive depth 1 sheaf with pure rank 1 on the Gorenstein curve X. We have $h^0(X,G_F)=h^0(X,F)$ and $h^1(X,G_F)=h^1(X,F)+\deg(F/G_F)$. The sheaf G_F is a subsheaf of F_- , both sheaves have pure rank 1, $h^1(X,F_-)=h^1(X,G_F)$ and $h^0(X,F_-)=h^0(X,G_F)+\deg(F_-/G_F)$. Both F_- and $\omega_X\otimes F_-$ are spanned, i.e. F_- is primitive.

Proof. The definition of G_F gives that the natural inclusion $G_F \hookrightarrow F$ induces an isomorphism of global sections. Since F is generically spanned, $\operatorname{Coker}(j)$ has finite support and G_F has pure rank 1. Since $h^0(X,G_F)=h^0(X,F)$, Riemann-Roch gives $h^1(X,G_F)=h^1(X,F)+\deg(F/G_F)$. Duality gives that $\omega_X\otimes F_-$ is the subsheaf of $\omega_X\otimes (G_F)^*$ spanned by its global sections. Hence duality gives $h^1(X,F_-)=h^1(X,G_F)$. Riemann-Roch gives $h^0(X,F_-)=h^0(X,G_F)+\deg(F_-/G_F)$. The last assertion is proved in [2], Lemma 3.3.1 (notice that in the proof of lemma he don't use the irreducibility of the curve C and that the curve has planar singularities, but only that it is Gorenstein).

For any reduced projective curve Y let $\mathcal{B}(Y)$ denote the set of the irreducible components of Y.

The proof of [2] gives the following result.

Theorem 1. Let S be a smooth and connected projective surface such that ω_S^* is spanned outside a proper closed subset \mathcal{B} of S. Let $X \subset S$ be a reduced curve not contained in \mathcal{B} and F a quasi-primitive torsion free sheaf on X with pure rank 1. Then there are an integral affine curve $\Delta \subseteq |X|$, $o \in \Delta|$, and a flat family $\{F_t\}_{t\in\Delta}$ of sheaves on the family $\{X_t\}_{t\in\Delta}$ associated to Δ with the following properties:

- (a) $X_o = X$ and $F_o \cong F$;
- (b) X_t is smooth outside \mathcal{B} for every $t \in \Delta \setminus \{o\}$;
- (c) If X is smooth at each point of $X \setminus \mathcal{B}$, then X_t is smooth for every $t \in \Delta \setminus \{o\}$;

(d) each F_t , $t \in \Delta$, is a depth 1 sheaf on X_t with rank 1 and $h^0(X_t, F_t) \ge h^0(X, F)$.

We were at first interested in the case $\mathcal{B} = \emptyset$, but there are at least two interesting surfaces S for which ω_S^* is generically spanned, but not spanned. The first example is given by del Pezzo surfaces of degree 8 (here \mathcal{B} is finite) and degree 9 (here \mathcal{B} is the only curve in the anticanonical linear system of S). The second example is given by most Hirzebruch surface. Let F_e , $e \geq 0$, be a Hirzebruch surface. We recall that $\omega_{F_e}^*$ is very ample (resp. spanned) if and only if $0 \leq e \leq 1$ (resp. $0 \leq e \leq 2$). If $e \geq 3$, then the base locus \mathcal{B} of $|\omega_{F_e}^*|$ is the unique curve of F_e with negative self-intersection.

Applying Theorem 1 and the smooth case of a theorem of G. Martens (see [5], theorem in the introduction), we get the following result; to state it we recall that as in [5] we take as a basis of $Pic(F_e)$ a fiber F of a ruling of F_e and an irreducible curve C_0 with minimal self-intersection; thus $C_0 + eF$ is the divisor H of [3], pp. 369–385.

Theorem 2. Let C be a reduced closed subcurve of the Hirzebruch surface F_e , C not a fiber of a ruling of F_e . Set $|kC_0 + bF| = |C|$. If e = 0 assume $b \ge k$. If e = 1 assume b > k. If $e \ge 3$ assume that C is smooth at each point of $C \cap C_0$. Then there is no quasi-primitive depth 1 sheaf on C with pure rank 1 and degree at most k-1 and the unique such sheaves with degree k are locally free and induced by a ruling of F_e .

Obviously, the degree k spanned line bundle is not unique if and only if e = 0 and b = k.

Another case to which Theorem 1 (with $\mathcal{B} = \emptyset$) may be applied is to reducible plane curves and their gonality with respect to quasi-primitive sheaves with pure rank 1 (see [4], Theorem 2.1, and [1], Theorem 3.2.1, for much more in the case of integral plane curves).

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

[1] M. Coppens, Free linear systems on integral Gorenstein curves, *J. Algebra*, **145**, No. 1 (1992), 209–218.

108 E. Ballico

[2] T. Gómez, Brill-Noether theory on singular curves and torsion-free sheaves on surfaces, *Comm. Anal. Geom.*, **9**, No. 4 (2001), 725-756.

- [3] R. Hartshorne, Algebraic Geometry, Springer, Berlin (1977).
- [4] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, *J. Math. Kyoto Univ.*, **26**, No. 3 (1986), 375-386.
- [5] G. Martens, The gonality of curves on a Hirzebruch surface, *Arch. Math.*, Basel, **67**, No. 4 (1996), 349-352.
- [6] C. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, 96 (1982).