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Abstract: In the paper we propose a Leslie model with impulsive state feed-
back control on the basis of the theory of economic threshold. Using the exis-
tence criteria of periodic solution of the general impulsive autonomous system,
we obtain that the system with impulsive state feedback control has periodic
solution of order one. Sufficient conditions for stability of periodic solution of
order one are given by using stability criteria of periodic solution of the gen-
eral impulsive autonomous system. Our results are confirmed by numerical
simulations.
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1. Introduction

People commonly apply the theory of economic threshold to control pest in
modern. The so-called economic threshold indicates that the pest population
mounts up to the density so that people take preventive measures to achieve
economical benefit. Obviously, the economic threshold depends on the status
of victims of crops, the type of control measures taken, the amount of pest
populations and their relationship with the crop, and many other factors. The
superiority of applying the economic threshold is to be able to better carry
on the pest control measures and fine adjustment according to the situation
of harmful insect’s density and their harm. Prevention activities will be more
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effective and more close to the purpose of making the maximum gains. If it
must use the pesticide in the prevention, then the amount of pesticide spray-
ing according to the economic threshold standard is less than the amount of
pesticide spraying of the general regular preventive. Therefore, it will certainly
reduce pollution levels for environment. Some scholars have estimated that if
people only spray pesticides in the real need time in the United States, then
the consumption of pesticides can be less than 50 percent of the general regular
preventive spraying. Based on the theory of economic threshold, we can come
off the purpose of pest control by impulsive feedback control. As for some mod-
els with impulsive effect, Bainov [1], Laksmikantham [4] have investigated and
been well studied. As for some models with impulsive state feedback control,
Zeng [8], Jiang [3] and Tang [7] discussed prey-predator models and obtained
the complete expression of the periodic solution. However, so far, few papers
have discussed the Leslie system using the impulsive differential equation with
state feedback control. In this paper, we will discuss the existence and stability
of periodic solution of the Leslie model with impulsive state feedback control
according to the existence criteria [8] and the stability theorem [6] of periodic
solution of the general impulsive autonomous system. This paper is organized
as follows. The model and some preliminary results are presented in the next
section. In Section 3, the existence and stability of periodic solution of order
one of differential equation with impulsive state feedback control are investi-
gated. Numerical simulations are given in Section 4. Finally, some conclusions
and biological discussions are provided in Section 5.

2. Model Formulation and Preliminaries

Leslie (1948, see [5]) introduced the famous Leslie predator-prey system




dx

dt
= ax − bx2 − cxy,

dy

dt
= ey − fy2

x
.

(2.1)

In the system (2.1), the density equation of prey is as same as the Volterra model
with damping. The predator is similar to the equation of Logistic model, but
the second item has been revised and takes into account the density of prey.
That is, it has been assumed that the prey grows logistically with growth rate a
and carrying capacity a/b in the absence of predation. The predator consumes
the prey according to function Φ(x) = cx and grows logistically with growth
rate e and carrying capacity x/f proportional to the population size of the
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prey (or prey abundance). The parameter f is a measure of the food quality
that the prey provides and converts to predator birth. Leslie introduced a
predator-prey model where the carrying capacity of the predator’s environment
was proportional to the number of prey, and still stressed the fact that there
were upper limits to the rates of increasing of both prey x and predator y,
which were not recognized in the Lotka-Volterra model. These upper limits can
be approached under favorable conditions: for the predators, when the amount
of prey per predator is large; for the prey, when the amount of predators (and
perhaps the amount of prey also) is small.

In some cases, if the amount of the pest is lower than a economic threshold,
it is not necessary to adopt control measures. But excessive amount of the pest
will often have caused a series of adverse effects, such as the depopulation of
predator population, the rampancy of the pest population, and so on. What is
especially serious, the environment and ecosystem will be seriously damaged.
In order to overcome the above shortcomings, we often use the method of cap-
turing the pests and putting in the nature enemies. In the system, when the
pest reaches the threshold, we take some measures to kill the pest in the system
so that the system is under the good condition. To control the pests under the
threshold, by using the monitoring system, we will kill the pests and put in
natural enemies at the same time when the amount of pests reaches a thresh-
old. Therefore, the feedback control can be carried out by the impulsive state
control.

In this paper, we consider that the prey is impulsively captured and the
predator is impulsively put in when x reaches the threshold. System (2.1) can
be modified as follows by introducing the impulsive state feedback control:





dx

dt
= ax − bx2 − cxy,

dy

dt
= ey − fy2

x
,





x < h,

△x = −px,
△y = qy + τ,

}
x = h,

x(0) = x0 > 0, y(0) = y0 > 0

(2.2)

where △x(t) = x(t+) − x(t) and △y(t) = y(t+) − y(t), τ ≥ 0, 0 < p < 1 is
constant and is also the fraction of the density of the prey that decreases due
to the feedback control when the density of prey x reaches h, and 0 < q < 1
is constant and is also the fraction of the density of predator y that increases
due to the feedback control when the density of prey x reaches h. that is, when
the amount of the prey reaches the threshold h at the time ti(h), controlling
measures are taken and the amount of prey and predator abruptly turn to
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(1− p)h and (1 + q)y(ti(h)) + τ , respectively. The parameters a, b, c, d, e, f and
h in system (2.2) are positive constants.

In this paper, we mainly discuss the existence and stability of periodic
solution of system (2.2) by the existence criteria [8] and stability criteria [6] of
the general impulsive autonomous system. Due to the layout constraints, we
omit the definitions of semi-dynamical system, the set of impulses, trajectory π̃x

and periodic solution of order k (the definitions see Lakshmikantham et al [4]).
We also omit the Brouwer’s fixed-point theorem (see Griffel [2]), the existence
theorem of periodic solution for the general autonomous impulsive differential
equations (see Theorem 1 of Zeng [8]), and the stability criteria of periodic
solution (see P.E. Simeonov [6]).

3. Existence and Stability of Periodic Solution of System (2.2)

Firstly, we will study the qualitative characteristic of system (2.2) without
the impulsive effect. If no impulsive effect is introduced, then system (2.2) is





dx

dt
= ax − bx2 − cxy,

dy

dt
= ey − fy2

x
.

(3.1)

Clearly, system (3.1) has a positive equilibrium (af/(bf +ce), ae/(bf +ce)).
The Jacobian matrix at equilibrium E = (af/(bf + ce), ae/(bf + ce)) is given
by

J(x,y) =




− abf

bf + ce
− acf

bf + ce
e2

f
−e


 .

Therefore, the eigenvalue equation is

λ2 +
abf + (bf + ce)e

bf + ce
λ +

abef + ace2

bf + ce
= 0.

Obviously,

λ1λ2 =
abef + ace2

bf + ce
> 0,

λ1 + λ2 = −abf + (bf + ce)e

bf + ce
< 0.
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Then the equilibrium E = (af/(bf + ce), ae/(bf + ce)) is asymptotically stable
node or focus. Here λ1, λ2 are two roots of

λ2 +
abf + (bf + ce)e

bf + ce
λ +

abef + ace2

bf + ce
= 0.

E = (af/(bf + ce), ae/(bf + ce)) is asymptotically stable node if (
√

a−
√

e)2 ≥
ace/(bf + ce) or focus if (

√
a −

√
e)2 < ace/(bf + ce).

Further, we can obtain that the positive equilibrium (x∗, y∗) of system (3.1)
is globally stable, where x∗ = af/(bf + ce), y∗ = ae/(bf + ce).

3.1. Existence and Stability of
Semi-Trivial Periodic Solution with τ = 0

Suppose system (2.2) has a periodic solution (ξ(t), η(t)) with period T . In this
paper the periodic solution (ξ(t), η(t)) is called a semi-trivial periodic solution
if its second component is zero. Let y(t) = 0 for t ∈ (0,+∞), and τ = 0, then
from system (2.2) we have

{
dx

dt
= ax − bx2, x < h,

△x = −px, x = h.
(3.2)

Setting x0 = x(0) = (1 − p)h, the solution of equation dx/dt = ax − bx2 is
x(t) = ag exp(at)/[1 + bg exp(at)], where g = (1 − p)h/[a − b(1 − p)h]. Set

T = 1
a

ln a−b(1−p)h
(1−p)(a−bh) , then x(T ) = h and x(T+) = x0. This means that system

(2.2) has the following semi-trivial periodic solution for (k − 1)T < t ≤ kT :





ξ(t) =
ag exp(a(t − (k − 1)T ))

1 + bg exp(a(t − (k − 1)T ))
,

η(t) = 0.
(3.3)

By establishing Poincare map, we can obtain the stability conditions of this
semi-trivial periodic solution. Due to the constraints of the layout, we only give
the theorem and omit the construction of Poincare map and the proof of the
following theorem.

Theorem 3.1. Assume that the following condition holds:

0 < (1 + q)
(

a−b(1−p)h
(1−p)(a−bh)

) e

a

< 1. (3.4)
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Then system (2.2) has a stable semi-trivial periodic solution





ξ(t) =
ag exp(a(t − (k − 1)T ))

1 + bg exp(a(t − (k − 1)T ))
,

η(t) = 0.

3.2. Existence for Periodic Solution of Order One

From discussions of the qualitative characteristic of system (2.2) without
the impulsive effect, we can see that (x∗, y∗) is a globally stable node or focus,
where x∗ = af/(bf + ce), y∗ = ae/(bf + ce). Because excessive number of the
pest will often have caused a series of adverse effects, if h ≥ x∗, then it has not
the significance to control by impulsive control. So we mainly pay attention
to the case that the following assumption holds: (H) h < x∗, x0 < x∗. By
construct a closed region such that all the solution of system (2.2) enter the
closed region and retain there, we can apply the existence criteria (Theorem
1 of [8]) to prove periodic solution of order one of system (2.2). Similarly, we
only give the main result and omit the process and the proof.

Theorem 3.2. Suppose that 0 < h < x∗, x0 < h, ey0 − fy2
0/x0 ≤ 0, then

system (2.2) has a periodic solution of order one.

3.3. Stability for Periodic Solution of Order One

Next, we analyze the stability for periodic solution of order one in system
(2.2). We can apply the stability theorem [6] of periodic solution of the general
impulsive autonomous system to obtain the following theorem:

Theorem 3.3. System (2.2) with the conditions of Theorem 3.2 has a
periodic solution of order one. Therefore, the periodic solution of order one is
orbitally asymptotically stable if

∣∣∣∣∣∣∣∣

(1 + q)(1 − p)

(
a − b(1 − p)h − c

(
(1 + q)η0 + τ

))

a − bh − cη0
exp

(∫ T

0
G(t)dt

)
∣∣∣∣∣∣∣∣
< 1.

Where x = ξ(t), y(t) = η(t) is the T−periodic solution of system (2.2),
η0 = η(0), P (x, y) = ax− bx2− cxy,Q(x, y) = y(e− fy

x
), G(t) = ∂P

∂x
(ξ(t), η(t))+

∂Q
∂y

(ξ(t), η(t)).



DYNAMICAL BEHAVIOR OF... 247

4. Numerical Simulation

Now we consider the following example:





dx

dt
= x(5 − 3x − 3y),

dx

dt
= y

(
5 − 2y

x

)
,





x < h,

△x = −0.2x,
△y = 0.2y + τ,

}
x = h,

(4.1)

In numerical simulation, let a = 5, b = 3, c = 3, e = 5, f = 2. If h = 0.6 >
x∗ = af/(bf + ce) = 10

21 , p = 0.2, q = 0.2, x0 = 0.1 < x∗, y0 = 0.415, τ = 1,
then the time series and phase portrait can be seen in Figure 1. By analysis of
Section 3, we know that impulsive control is no effect for system (2.2) if h > x∗

holds. As shown in Figure 1, numerical simulation also suggests that system
(2.2) with the coefficients above admits no impulse to occur. By Theorem 3.2,
we know that system (2.2) has a periodic solution of order one under conditions
of Theorem 3.2. As shown in Figure 2, if p = 0.2, q = 0.2, x0 = 0.1 < x∗, y0 =
0.415, h = 0.45 < x∗ = 10

21 , τ = 1, then system (2.2) has a periodic solution of
order one which verifies theoretical results in this paper.

5. Conclusion

In this paper, we built a Leslie model with impulsive state feedback control.
Firstly, we investigated qualitative characteristic of the system without impul-
sive effect, and verified that the system was globally asymptotically stable. We
obtained that the system with impulsive state feedback control had a periodic
solution of order one, and sufficient conditions for existence and stability of
periodic solution of order one. The results show that the Leslie model with
impulsive state feedback control tends to a stable state or periodic, and the
behavior of impulsive state feedback control on the density of population plays
an important role on the periodic or stable state of system (2.2). When the
amount of prey reaches an appropriate threshold, a state feedback measure for
controlling amount of prey is taken. According to the analysis of Section 3,
this measure is effective based on the fact that the system has stable periodic
solution under some conditions. According to the theoretical results, the sys-
tem will tend to a stable production level or the biome will be periodic. The
key to the system by applying the system with feedback control is to give the
suitable feedback state (the value of h) and the control parameters (p, q and τ)
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Figure 1: Time series and portrait phase of system (2.2) when a =
5, b = 3, c = 3, e = 5, f = 2, x(0) = 0.1, y(0) = 0.415, p = 0.2, q =
0.2, τ = 1, h = 0.6 > x∗.

according to practice. It is seen from Figure 2 that there are positive periodic
trajectories under the impulsive state feedback control. Therefore, the periodic
system can be achieved if the value of h (that is economic threshold) and the
suitable initial value of the predator and the prey are taken.
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