WEAKLY ULTRA SEPARATION AXIOMS VIA $\alpha\psi$-OPEN SETS

Y.K. Kim1, R. Devi2, A. Selvakumar3

1Department of Mathematics
Myongji University
Kyunggi, 449-728, SOUTH KOREA

2Department of Mathematics
Kongunadu Arts and Science College
Coimbatore, 641029, Tamil Nadu, INDIA

Abstract: In this paper, we introduce the concept of weakly ultra-$\alpha\psi$-separation of two sets in a topological space using $\alpha\psi$-open sets. The $\alpha\psi$-closure and the $\alpha\psi$-kernel are defined in terms of this weakly ultra-$\alpha\psi$-separation. We also investigate some of the properties of weak separation axioms like $\alpha\psi$-T_0 and $\alpha\psi$-T_1 spaces.

AMS Subject Classification: 54A05, 54D10

Key Words: $\alpha\psi$-open sets, $\alpha\psi$-kernel, $\alpha\psi$-closure, weakly ultra-$\alpha\psi$-separation, $\alpha\psi$-T_0 and $\alpha\psi$-T_1 spaces

1. Introduction

The notion of $\alpha\psi$-closed set was introduced and studied by R. Devi et al (see [2]). In this paper, we define that a set A is weakly ultra-$\alpha\psi$-separated from B if there exists a $\alpha\psi$-open set G containing A such that $G \cap B = \phi$. Using this concept, we define the $\alpha\psi$-closure and the $\alpha\psi$-kernel. Also we define the $\alpha\psi$-derived set and the $\alpha\psi$-shell of a set A of a topological space (X, τ).

Throughout this paper, spaces means topological spaces on which no separation axioms are assumed unless otherwise mentioned. Let A be a subset of a space X. The closure and the interior of A are denoted by $cl(A)$ and $int(A)$, respectively.

Received: June 1, 2011 © 2011 Academic Publications, Ltd.

8Correspondence author
2. Preliminaries

Before entering to our work, we recall the following definitions, which are useful in the sequel.

Definition 1. A subset A of a space (X, τ) is called

(i) a *semi-open* set (see [4]) if $A \subseteq \text{cl}(\text{int}(A))$ and a *semi-closed* set if $\text{int}(\text{cl}(A)) \subseteq A$

(ii) an *α-open* set (see [5]) if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$ and an *α-closed* set if $\text{cl}(\text{int}(\text{cl}(A))) \subseteq A$.

The *semi-closure* (resp. *α-closure*) of a subset A of a space (X, τ) is the intersection of all *semi-closed* (resp. *α-closed*) sets that contain A and is denoted by $\text{scl}(A)$ (resp. $\text{\alpha\text{-}cl}(A)$).

Definition 2. A subset A of a topological space (X, τ) is called

(i) a *semi-generalized closed* (briefly *sg-closed*) set (see [1]) if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is *semi-open* in (X, τ). The complement of *sg-closed* set is called *sg-open* set,

(ii) a *ψ-closed* set (see [6]) if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is *sg-open* in (X, τ). The complement of *ψ-closed* set is called *ψ-open* set and

(iii) a *$\alpha\psi$-closed* set (see [2]) if $\text{\psi\text{-}cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is *α-open* in (X, τ). The complement of *$\alpha\psi$-closed* set is called *$\alpha\psi$-open* set.

The *$\alpha\psi$-closure* of a subset A of a space (X, τ) is the intersection of all *$\alpha\psi$-closed* sets that contain A and is denoted by $\alpha\psi\text{cl}(A)$ or $\alpha\psi\text{-cl}(A)$. The *$\alpha\psi$-interior* of a subset A of a space (X, τ) is the union of all *$\alpha\psi$-open* sets that are contained in A and is denoted by $\alpha\psi\text{int}(A)$. By $\alpha\psi\text{O}(X, \tau)$ or $\alpha\psi\text{O}(X)$, we denote the family of all *$\alpha\psi$-open* sets of (X, τ).

Definition 3. The intersection of all *$\alpha\psi$-open* subsets of (X, τ) containing A is called the *$\alpha\psi$-kernel* of A (briefly, $\alpha\psi\text{-ker}(A)$), i.e.

$$\alpha\psi\text{-ker}(A) = \cap\{G \in \alpha\psi\text{O}(X) : A \subseteq G\}.$$

Definition 4. Let $x \in X$. Then *$\alpha\psi$-kernel* of x is denoted by $\alpha\psi\text{-ker}\{x\} = \cap\{G \in \alpha\psi\text{O}(X) : x \in G\}$.

Definition 5. Let X be a topological space and $x \in X$, then a subset N_x of X is called an *$\alpha\psi$-neighborhood* (briefly, *$\alpha\psi$-nbd*) of X if there exists an *$\alpha\psi$-open* set G such that $x \in G \subseteq N_x$.
Definition 6. In a space X, a set A is said to be *weakly ultra-$\alpha\psi$-separated* from a set B if there exists an $\alpha\psi$-open set G such that $A \subseteq G$ and $G \cap B = \phi$ or $A \cap \alpha\psi\text{cl}(B) = \phi$.

By the definition 6, we have the following for $x, y \in X$ of a topological space,

(i) $\alpha\psi\text{-cl}({x}) = \{ y : \{ y \} \text{ is not weakly ultra-} \alpha\psi\text{-separated from} \{ x \} \}$
(ii) $\alpha\psi\text{-ker}({x}) = \{ y : \{ y \} \text{ is not weakly ultra-} \alpha\psi\text{-separated from} \{ x \} \}$.

Definition 7. For any point x of a space X:

(i) The $\alpha\psi$-derived (briefly, $\alpha\psi\text{-d}(\{x\})$) set of x is defined to be the set $\alpha\psi\text{-d}(\{x\}) = \alpha\psi\text{-cl}(\{x\}) \setminus \{x\} = \{ y : y \neq x \text{ and } \{ y \} \text{ is not weakly ultra-} \alpha\psi\text{-separated from} \{ x \} \}$,

(ii) the $\alpha\psi$-shell (briefly, $\alpha\psi\text{-shl}(\{x\})$) of a singleton set $\{x\}$ is defined to be the set $\alpha\psi\text{-shl}(\{x\}) = \alpha\psi\text{-ker}(\{x\}) \setminus \{x\} = \{ y : y \neq x \text{ and } \{ y \} \text{ is not weakly ultra-} \alpha\psi\text{-separated from} \{ y \} \}$.

Definition 8. Let X be a topological space. Then we define

(i) $\alpha\psi\text{-N-D} = \{ x : x \in X \text{ and } \alpha\psi\text{-d}(\{x\}) = \phi \}$.
(ii) $\alpha\psi\text{-N-shl} = \{ x : x \in X \text{ and } \alpha\psi\text{-shl}(\{x\}) = \phi \}$.
(iii) $\alpha\psi\langle x \rangle = \alpha\psi\text{-cl}(\{x\}) \cap \alpha\psi\text{-ker}(\{x\})$.

3. $\alpha\psi$-T_i Spaces, $i=0, 1$

Definition 9. A topological space X is said to be $\alpha\psi$-T_0 if for $x, y \in X$, $x \neq y$, there exists $U \in \alpha\psi\text{O}(X)$ such that U contains only one of x or y but not the other.

Definition 10. (see [3]) A topological space X is said to be $\alpha\psi$-T_1 if for $x, y \in X$, $x \neq y$, there exist $U, V \in \alpha\psi\text{O}(X)$ such that $x \in U$ and $y \in V$ but $y \notin U$ and $x \notin V$.

Remark 11. Every $\alpha\psi$-T_1 space is $\alpha\psi$-T_0.

Theorem 12. A topological space X is an $\alpha\psi$-T_0 space if and only if the $\alpha\psi$-closure of distinct points are distinct.
Proof. Let \(x \neq y \) implies \(\alpha\psi\text{-cl}\{x\} \neq \alpha\psi\text{-cl}\{y\} \). Then there exists at least one \(z \in \alpha\psi\text{-cl}\{x\} \) but \(z \notin \alpha\psi\text{-cl}\{y\} \). Let \(x \in \alpha\psi\text{-cl}\{y\} \). Then \(\alpha\psi\text{-cl}\{x\} \subseteq \alpha\psi\text{-cl}\{y\} \), which is a contradiction that \(z \notin \alpha\psi\text{-cl}\{y\} \). Hence \(x \in X - \alpha\psi\text{-cl}\{y\} \). Conversely, let \(X \) be an \(\alpha\psi\text{-T}_0 \) space. Take \(x, y \in X \) and \(x \neq y \). Then there exists an \(\alpha\psi\text{-open set} \) \(G \) such that \(x \in G \) and \(y \notin G \), which implies \(y \in X - G = F(\text{say}) \). Now \(\alpha\psi\text{-cl}\{y\} = \cap \{ F : \text{cl}\{y\} \subseteq F \text{ and } F \text{ is an } \alpha\psi \text{-closed set} \} \). This implies that \(y \notin \alpha\psi\text{-cl}\{y\} \) and \(x \notin \alpha\psi\text{-cl}\{y\} \).

Theorem 13. A space \(X \) is \(\alpha\psi\text{-T}_0 \) if and only if any of the following conditions holds.

(i) For arbitrary \(x, y \in X \), \(x \neq y \), either \(\{x\} \) is weakly ultra-\(\alpha\psi \)-separated from \(\{y\} \) or \(\{y\} \) is weakly ultra-\(\alpha\psi \)-separated from \(\{x\} \).

(ii) \(y \in \alpha\psi\text{-cl}\{x\} \) implies \(x \notin \alpha\psi\text{-cl}\{y\} \).

(iii) For all \(x, y \in X \) if \(x \neq y \), then \(\alpha\psi\text{-cl}\{x\} \neq \alpha\psi\text{-cl}\{y\} \).

Proof. (i) Obvious from the definitions of \(\alpha\psi\text{-T}_0 \) and weakly ultra-\(\alpha\psi \)-separation.

(ii) By assumption, \(y \in \alpha\psi\text{-cl}\{x\} \) and so \(\{y\} \) is not weakly ultra-\(\alpha\psi \)-separated from \(\{x\} \). As \(X \) is \(\alpha\psi\text{-T}_0 \), \(\{x\} \) should be weakly ultra-\(\alpha\psi \)-separated from \(\{y\} \), that is \(x \notin \alpha\psi\text{-cl}\{y\} \).

(iii) If \(X \) is \(\alpha\psi\text{-T}_0 \), then for all \(x, y \in X \) and \(x \neq y \), \(\alpha\psi\text{-cl}\{x\} \neq \alpha\psi\text{-cl}\{y\} \) as evidenced by (ii). Now let us prove the converse. Let \(\alpha\psi\text{-cl}\{x\} \neq \alpha\psi\text{-cl}\{y\} \). Then there exists \(z \in X \), such that \(z \in \alpha\psi\text{-cl}\{x\} \) and \(z \notin \alpha\psi\text{-cl}\{y\} \). If \(\{x\} \) is not weakly ultra-\(\alpha\psi \)-separated from \(\{y\} \), then \(x \in \alpha\psi\text{-cl}\{y\} \). So \(\alpha\psi\text{-cl}\{x\} \subseteq \alpha\psi\text{-cl}\{y\} \). Then \(z \in \alpha\psi\text{-cl}\{y\} \), which is a contradiction. □

Theorem 14. A space \(X \) is \(\alpha\psi\text{-T}_0 \) if and only if \(\alpha\psi\text{-d}(\{x\}) \cap \alpha\psi\text{-shl}(\{x\}) = \phi \).

Proof. Let \(X \) be \(\alpha\psi\text{-T}_0 \). Suppose we have \(\alpha\psi\text{-d}(\{x\}) \cap \alpha\psi\text{-shl}(\{x\}) = \phi \). Let \(z \in \alpha\psi\text{-d}(\{x\}) \) and \(z \in \alpha\psi\text{-shl}(\{x\}) \). Then \(z \neq x \) and \(z \in \alpha\psi\text{-cl}(\{x\}) \) and \(z \in \alpha\psi\text{-ker}(\{x\}) \). Then \(\{z\} \) is not weakly ultra-\(\alpha\psi \)-separated from \(\{x\} \) and also \(\{x\} \) is not weakly ultra-\(\alpha\psi \)-separated from \(\{z\} \), which is a contradiction.

Conversely, let \(\alpha\psi\text{-d}(\{x\}) \cap \alpha\psi\text{-shl}(\{x\}) = \phi \). Then there exists \(z \neq x \), \(z \in \alpha\psi\text{-cl}(\{x\}) \) and \(z \notin \alpha\psi\text{-ker}(\{x\}) \). Hence if we have \(\{z\} \), which is not weakly ultra-\(\alpha\psi \)-separated from \(\{x\} \), then \(\{x\} \) is weakly ultra-\(\alpha\psi \)-separated from \(\{z\} \). Hence, \(X \) is \(\alpha\psi\text{-T}_0 \). □
Theorem 15. A topological space X is $\alpha\psi$-T_1 if and only if $\{x\}$ is $\alpha\psi$-closed in X for every $x \in X$.

Proof. If $\{x\}$ is $\alpha\psi$-closed in X, for $x \neq y$, $X - \{x\}$, $X - \{y\}$ are $\alpha\psi$-open sets such that $y \in X - \{x\}$ and $x \in X - \{y\}$. Therefore, X is $\alpha\psi$-T_1.

Conversely, if X is $\alpha\psi$-T_1 and if $y \in X - \{x\}$ then $x \neq y$. Therefore, there exists an $\alpha\psi$-open sets U_x, V_y in X such that $x \in U_x$ but $y \notin U_x$ and $y \in V_y$ but $x \notin V_y$. Let G be the union of all such V_y. Then G is an $\alpha\psi$-open set and $G \subseteq X - \{x\} \subseteq X$. Therefore, $X - \{x\}$ is a $\alpha\psi$-open set in X. \qed

Theorem 16. A topological space is an $\alpha\psi$-T_1 space if and only if every subset of X is an $\alpha\psi$-closed set.

Proof. Assume that every singleton subset $\{x\}$ of X is a $\alpha\psi$-closed set. A finite subset of X is the union of finite number of singleton sets. Hence $\alpha\psi$-closed. Conversely, every singleton set $\{x\}$ is a finite subset of X. \qed

Theorem 17. A space X is $\alpha\psi$-T_1 if and only if one of the following conditions holds.

(i) For arbitrary $x, y \in X$, $x \neq y$, $\{x\}$ is weakly ultra-$\alpha\psi$-separated from $\{y\}$.

(ii) For every $x \in X$, $\alpha\psi$-cl($\{x\}$) = $\{x\}$.

(iii) For every $x \in X$, $\alpha\psi$-d($\{x\}$) = ϕ or $\alpha\psi$-$N-D = X$.

(iv) For every $x \in X$, $\alpha\psi$-ker($\{x\}$) = $\{x\}$.

(v) For every $x \in X$, $\alpha\psi$-shl($\{x\}$) = ϕ or $\alpha\psi$-$N-shl = X$.

(vi) For every $x, y \in X$, $x \neq y$, $\alpha\psi$-cl($\{x\}$) \cap $\alpha\psi$-cl($\{y\}$) = ϕ.

(vii) For every arbitrary $x, y \in X$, $x \neq y$, we have $\alpha\psi$-ker($\{x\}$)\cap $\alpha\psi$-ker($\{y\}$) = ϕ.

Proof. (i) This is just a reformulation of the definition of $\alpha\psi$-T_1.

(ii) If $\{x\}$ is weakly ultra-$\alpha\psi$-separated from $\{y\}$, then for $y \neq x$, we have $y \notin \alpha\psi$-cl($\{x\}$), and hence $x \notin \alpha\psi$-ker($\{y\}$). Therefore we get that $\alpha\psi$-ker($\{y\}$) = $\{y\}$. Its converse is just a reformulation of the above proof.

(iii), (iv) and (v) are obvious.

(vi) As X is $\alpha\psi$-T_1, $\alpha\psi$-cl($\{x\}$) = $\{x\}$ and $\alpha\psi$-cl($\{y\}$) = $\{y\}$. So, when $x \neq y$, $\alpha\psi$-cl($\{x\}$) \cap $\alpha\psi$-cl($\{y\}$) = ϕ.

(vii) Obvious from (vi).

Theorem 18. If X is an $\alpha\psi$-T_1 space, then the intersection of $\alpha\psi$-nbd of an arbitrary point of X is a singleton set.

Proof. Let X be an $\alpha\psi$-T_1 space. Also let $x \in X$ and N_x be the $\alpha\psi$-nbd of x. If y is a point of X and $y \neq x$, then there exists an $\alpha\psi$-open set containing x but not y. Since y is arbitrary, N_x has no point other than x. Conversely, the intersection of $\alpha\psi$-nbd of x is the singleton set $\{x\}$, which does not contain any other point y. Hence X is an $\alpha\psi$-T_1 space.

References

