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Abstract: In previous papers by the author, schemes were used to specify
some new axioms for set theory, to give a lower bound on the Mahlo rank of a
weakly compact cardinal, and to give a chain in the Galvin-Hajnal order with
properties of interest. Here, various improvements are made.
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1. Introduction

Schemes were defined by the author in [6], where they were called systems of
operations. A related notion is the “dressed ordinals” of [14].

In [6], it was shown using schemes that the set of greatly Mahlo cardinals
below a weakly compact cardinal is a Π1

1–enforceable set. This was also shown
in [2]. In [7], it was shown that a more restricted set of cardinals, called Hθ-
Mahlo cardinals, is Π1

1-enforceable. It was also shown that the set of greatly
Mahlo cardinals is, mod the thin ideal, contained in Mσ for any maximal set
Mσ of Mahlo rank σ < κ+ (see below for terminology). In [8], schemes were
used to postulate some new axioms for set theory. In [9], schemes were used
to prove a lower bound on the Mahlo rank of an Hn-Mahlo cardinal. In [10],
schemes were used to construct a chain of functions in the Galvin-Hajnal order
which has properties of interest.
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In this paper, various improvements are made to the methods and results
of the above mentioned papers. Notation as in the preceding papers will be
used, as follows:

• Ord for the class of ordinals, Lim for the class of limit ordinals, Lim for
the operator taking a class of ordinals to the class of its limit points (so
that Lim = Lim(Ord)), Inac for the strongly inaccessible cardinals, Pow
for the power set of a set, Cf for the cofinality of a set of ordinals, Dom for
the domain of a function, Id for the identity function on a given domain.

• For κ ∈ Inac, Inκ for Inac ∩ κ, and In∅κ for Inκ ∪ {∅}.
• △ for diagonal intersection, ▽ for diagonal union.
The reader is assumed to be familiar with the basic properties of club subsets

of a regular uncountable cardinal, and thin and stationary sets.
Throughout the paper, κ will denote an element of Inac.

2. Schemes

In this section, the basic facts concerning schemes are reviewed, with some
streamlining from earlier versions. A scheme, of rank σ, for κ, is a pair Σ =
〈σ, φ〉 where σ < κ+ and φ is a function whose domain is the set of limit ordinals
α ≤ σ. For α ∈ Dom(φ), φ(α) is an increasing function with domain an ordinal
η ≤ κ, and whose range is an unbounded subset of α. If Cf(α) < κ then η < κ,
and if Cf(α) = κ then η = κ. Scκ denotes the set of schemes for κ.

For a scheme Σ = 〈σ, φ〉 in Scκ, and α ≤ σ, let Σ≤α = 〈α, φ ↾ (α+ 1)〉.
For F : Pow(κ) 7→ Pow(κ) and Σ ∈ Scκ, the function FΣ: Pow(κ) 7→ Pow(κ)

may be defined by the following recursion. In cases 2 and 3 αξ is written for
φ(α)(ξ).

Case 0 (σ = 0): FΣ = Id.
Case 1 (σ = τ + 1): FΣ = F ◦ FΣ≤τ .

Case 2 (σ ∈ Lim, Cf(σ) < κ): FΣ(X) = ∩ξ<ηF
Σ≤σξ (X).

Case 3 (σ ∈ Lim, Cf(σ) = κ): FΣ(X) = △ξ<κF
Σ≤σξ (X).

Define the subset TΣ ⊆ κ recursively as follows.
0: ∅.
1: TΣ≤τ

.
2: (η + 1) ∪ ∪ξ<ηTΣ≤σξ

.

3: ▽ξ<κTΣ≤σξ
.

It is readily verified that TΣ is thin.
Say that a scheme Σ′ is a prefix of Σ, written Σ′ ⊑ Σ, if Σ′ = Σ≤α for some

α ≤ σ. Given a limit ordinal η and a chain Sα for α < η under the order ⊑,
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the join ⊔Sα is that “partial” scheme, where σ = ∪σα and φ = ∪φα. ⊔Sα may
be completed to a scheme by specifying φ(σ).

A scheme Σ ↓ λ in Scλ will be defined by recursion on Σ, for those λ ∈ Inκ
such that λ /∈ TΣ. Write Σ ↓ λ as 〈σ′, φ′〉.

0: The scheme with σ′ = 0.
1: Σ≤τ ↓ λ with τ ′ replaced by τ ′ + 1.
2: ⊔ξ<ηΣ≤σξ

↓ λ, with φ′(σ′)(ξ) set to (φ(σ)(ξ))′.
3: ⊔ξ<λΣ≤σξ

↓ λ, with φ′(σ′)(ξ) set to (φ(σ)(ξ))′.

Let L1 be those F : Pow(κ) 7→ Pow(κ). such that for any β < κ, F (X)∩β =
F (Y ) ∩ β whenever X ∩ β = Y ∩ β. Given such, a function (F ⇂ β): Pow(β) 7→
Pow(β) may be defined for any β < κ, by letting (F ⇂ β)(X ∩ β) = F (X) ∩ β.
It is easily seen that L1 is closed under composition, pointwise intersection,
and pointwise diagonal intersection; whence by induction on Σ, if F ∈ L1 and
Σ ∈ Scκ then FΣ ∈ L1.

Lemma 1. Suppose F ∈ L1, and Σ ∈ Scκ. For λ ∈ Inκ, if λ /∈ TΣ then
FΣ ⇂ λ = FΣ↓λ.

Proof. By induction on Σ; see lemma 3 of [9] for some details.

3. Maximal Sets and Canonical Functions

This section also reviews and extends various facts. Suppose< is a well-founded
relation on a set S. A rank function ρ may be defined on the elements of S, by
the recursion ρ(x) = µρ(∀w < x(ρ(w) < ρ)). Letting x< denote {w : w < x},
ρ(x) = ρ[x<]. Also, ρ(x) = sup{ρ(w) + 1 : w < x}. The rank ρ(<) of <
may be defined as the smallest ordinal such that ρ(w) < ρ for all w ∈ S, and
equals ρ[S], and also sup{ρ(w)+1 : w ∈ S}. The following lemma is considered
folklore, and is stated for emphasis.

Lemma 2. ρ(<) < |S|+.

Proof. Since ρ(x) 6= ρ(y) ⇒ x 6= y, |ρ[S]| ≤ |S|, and the claim follows.

For X,Y ⊆ κ say that X ⊆t Y if X − Y is thin. For X ⊆ In∅κ let H(X) =
{λ ∈ X: X ∩λ is a stationary subset of λ}. For X,Y ⊆ In∅κ say that X <R Y if
Y ⊆t H(X). The reader is assumed to be familiar with the basic properties of
H and <R. In particular, <R is well-founded and transitive. Let ρR denote the
rank function, and write ρR(κ) for ρR(<R). ρR(κ) is a measure of how “Mahlo”
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κ is: ρR(κ) ≥ 1 iff κ is Mahlo, ρR(κ) ≥ κ+ iff κ is greatly Mahlo, etc. By lemma
2, ρR(κ) < (2κ)+, and if GCH then ρR(κ) < κ++.

It is useful to consider the order <R, “relativized” to a subset W ⊆ In∅κ;
this is simply <R↾ W . The rank function will be denoted ρWR . In most uses W
is a stationary subset, although some facts don’t require this assumption.

In the order <W
R , a stationary set M ⊆ In∅κ is said to be maximal of rank

ρ if ρMR (M) = ρ, and X ⊆t M whenever X ⊆ W is a stationary subset with
ρWR (X) ≥ ρ.

Lemma 3. If HΣ(W ) is stationary then it is maximal of rank σ in <R↾ W .
If W is maximal of rank ρ in <R then HΣ(W ) is maximal of rank ρ+ σ in <R.

Proof. Theorem 1 of [9] holds for the order <R↾ W , with In∅κ replaced by
W in the statement of the theorem; the modification to the proof are straight-
forward. The lemma follows easily.

Note that if ρWR (κ) < κ+ then ρWR (κ) equals the smallest σ such that HΣ(W )
is thin. In [7] a stationary subset S ⊆ In∅κ with ρR(S) = 0 and ρR(H(S)) = 2 is
constructed, assuming V = L and κ not weakly compact.

Given a sequence fξ of functions on Ord to Ord, as usual define the sup
“pointwise”, i.e., (supξ fξ)(γ) = supξ(fξ(γ)). Given a sequence 〈fξ: ξ < κ〉 let
dsupξ<κfξ be the function f where f(λ) = supξ<λ fξ(λ).

Suppose f and g are functions from κ to κ. Say that f <∗ g if {λ : f(λ ≥
g(λ} is thin. By ω-completeness of the thin ideal, <∗ is well-founded; it is also
transitive. Let ρ∗ denote the rank function.

The relations ≤∗ and ≡∗ are defined similarly to <∗; ≤∗ is a well-founded
quasi-order, and ≡∗ is the canonical congruence relation. <∗ is not the strict
part of ≤∗. Readily verified basic facts include the following.

• For η < κ, supξ<η fξ is a least upper bound under ≤∗ of {fξ}.
• dsupξ<κfξ is a least upper bound under ≤∗ of a sequence 〈fξ〉.
• If f ≤∗ g <∗ h or f <∗ g ≤∗ h then f <∗ h.
A function f is said to be canonical of rank ρ if ρ<∗(f) = ρ, and if ρ∗(g) ≥ ρ

then f ≤∗ g.

For a scheme Σ ∈ Scκ, define a function fΣ: Inκ 7→ κ by recursion on Σ as
follows.

0: The identically 0 function.
1: fΣ≤τ

+ 1.
2: supξ<η fΣ≤σξ

.

3: dsupξ<κfΣ≤σξ
.

Lemma 4. fΣ is canonical of rank σ.
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Proof. This follows by induction on Σ, using well-known facts which can be
found in [12] for example.

Lemma 5. Suppose Σ ∈ Scκ, λ ∈ Inκ, and λ /∈ TΣ.
a. fΣ ↾ λ = fΣ↓λ.
b. fΣ(λ) equals the rank of Σ ↓ λ.

Proof. Both claims follow by induction on Σ; see lemma 5 of [10] for some
details.

Lemma 6. Suppose X ⊆ In∅κ, Σ ∈ Scκ, λ ∈ X ∩ Inκ, and λ /∈ TΣ. Then
λ ∈ HΣ(X) iff ρX∩λ

R (λ) ≥ fΣ(λ).

Proof. The proof is by induction on Σ, with cases as follows. In case 0,
both statements of the equivalence are true under the assumption λ ∈ X. In
case 1, λ ∈ HHΣ≤τ (X) iff λ ∈ HΣ≤τ (X) and HΣ≤τ (X) ∩ λ is stationary iff (by
lemma 1) λ ∈ HΣ≤τ (X) and HΣ≤τ↓λ(X ∩λ) is stationary. Using lemma 5.b and
the induction hypothesis, the first conjunct holds iff ρX∩λ

R (λ) ≥ τ ′ where τ ′ is
the rank of Σ≤τ ↓ λ. It follows that the conjunction holds iff ρX∩λ

R (λ) ≥ σ′

where σ′ = τ ′ + 1 is the rank of Σ ↓ λ; iff (using 5.b again) ρX∩λ
R (λ) ≥ fΣ(λ).

In case 2, λ ∈ ∩ξ<ηH
Σ≤σξ (In∅κ) iff ρR(λ) ≥ supξ<η{fΣ≤σξ

(λ)}. Case 3 is similar

to case 2.

The order <∗↾ X
κ may be considered. In this case, X will be assumed to be

stationary. In particular, κ must be Mahlo. If f is a canonical function of rank
σ on κ then f ↾ X is a canonical function of rank σ in this order. In particular,
this holds for fΣ.

Lemma 7. For any Σ, ρXR (κ) > σ iff HΣ(X) is stationary iff {λ ∈ X∩Inκ :
ρXR (λ) ≥ fΣ(λ)} is stationary.

Proof. The first equivalence is immediate, and the second follows by lemma
6.

4. Lower Bound on the Mahlo Rank of a Weakly Compact Cardinal

In this section the methods of [9] will be used, in further iterations, to improve
the lower bound on the Mahlo rank of a weakly compact cardinal given there.
Although the bound is undoubtedly still weak, the methods might be of interest
as examples in attempting to develop a general theory.
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Let ⊙ denote the ordinal exponentiation function. Define ↑ by the recursion
α ↑ 0 = 1, α ↑ (β +1) = α⊙ (α ↑ β), and α ↑ β = supβ′<β α ↑ β′ for limit β. In
[9] it was shown that if κ is a weakly compact cardinal then ρ(κ) ≥ κ+ ↑ ω.

For a cardinal κ let φκ
0(α) denote the function κα. The function φω

0 (α) is the
initial function of the “Veblen hierarchy” (q.v. see [13]). The Veblen function
for any “base” cardinal κ may be defined the same way, namely, φκ

α(ξ) is the
ξth element in the enumeration of the values which are fixed points of each φκ

β

for β < α.

Let Eα be defined by the following recursion.

1. E0 = κ+ ↑ ω.
2. Eα = Eβ ↑ ω if α = β + 1.
3. Eα = ∪β<αEβ for α ∈ Lim.

When the base is ω, it is well-known that Eα = φ1(α) (see [15]). For conve-
nience, a proof will be given for arbitrary base.

Lemma 8. For any α, κ+
Eα = Eα.

Proof. This is clear for α = 0. Suppose α = β + 1 where β ≥ 1. Then
Pα = PPα

β ≥ κ+
Pα ≥ Pα. If α is a limit ordinal then κ+

Pα = sup{κ+
Pβ} =

sup{Pβ} = Pα.

Theorem 9. Eα = φκ
1(α).

Proof. The proof is by induction on α. For the basis α = 0, the least fixed
point of φ0 is easily seen to be κ+ ↑ ω. Suppose α = β + 1. It is clear that
Eβ + 1 ≤ Eα, whence (with ⊙ being associated to the right) κ+ ⊙ · · · ⊙ κ+ ⊙
(Eβ + 1) ≤ Eβ ⊙ · · · ⊙Eβ ⊙Eβ, whence Eα ≥ φκ

1(α). We claim that for n ≥ 2,
Eβ ⊙ · · · ⊙ Eβ (n occurrences of Eβ) ≤ κ+ ⊙ · · · ⊙ κ+ ⊙ κ+ ⊙ (Eβ + 1), and
Eα = φκ

1(α) follows. The claim is proved by induction on n. For the basis n = 2,
using lemma 8, Eβ ⊙ Eβ = (κ+ ⊙ Eβ)⊙ Eβ = κ+ ⊙ Eβ ⊙ 2 ≤ κ+ ⊙ Eβ ⊙ κ+ =
κ+⊙(κ+⊙Eβ)⊙κ+ = κ+⊙κ+⊙(Eβ ·κ

+) = κ+⊙κ+⊙((κ+⊙Eβ)·κ
+) = κ+⊙κ+⊙

κ+⊙(Eβ+1). In the case n+1, Eβ⊙Eβ⊙· · ·⊙Eβ = (κ+⊙Eβ)⊙Eβ⊙· · ·⊙Eβ =
κ+⊙(Eβ ·Eβ⊙· · ·⊙Eβ) = κ+⊙Eβ⊙· · ·⊙Eβ ≤ κ+⊙κ+⊙· · ·⊙κ+⊙κ+⊙(Eβ+1).
The case when α is a limit ordinal is immediate.

The reader is referred to [9] for definitions and properties of the following:

Ln, Fn 7→ F ∗
n , In, ∩, △, Hn, Rn, ρn.

Other notation following [9] will be used.

For 1 ≤ j ≤ k < ω and Σ a scheme for κ of rank σ, let Ij;Σ be defined by
the following recursion:

1. Ij;0 = Ij, or H if j = 1
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2. Ijk;Σ = Ik;Σ(Ik−1;Σ) · · · (Ij;Σ)
3. Ijω;Σ = ∩j≤k<ωIjk;Σ
4. Ij;Σ = Ijω;Σ≤τ

if σ = τ + 1
5. Ij;Σ = ∩ξ<ηIj;Σ≤αξ

if Cf(σ) < κ

6. Ij;Σ = △ξ<κIj;Σ≤αξ
if Cf(σ) = κ

It is convenient to define Pα to be 1 if α = 0, Eα−1 if 0 < α < ω, and Eα if
α ≥ ω.

Lemma 10. Ij;Σ ∈ Rj, and ρj(Ij;Σ) ≥ Pσ.

Proof. The proof is by induction on Σ. The basis σ = 0 is immediate. For
the case σ = τ + 1, for l ≥ 0 let Ql;τ = Pτ · κ

+ ⊙ (Pτ · κ
+ ⊙ (· · ·Pτ · κ

+ ⊙ Pτ )),
where there are l + 1 Pτ ’s. By results of [9], ρj(Ijk;Σ) = Qk−j;τ . Using lemma
8, it follows that Ql;τ equals Pτ if l = 0, P 2

τ if l = 1, and Pτ ↑ l if l ≥ 2. It then
follows that ρj(Ij ;σ) = ρj(Ijω; τ) ≥ supk ρj(Ijk; τ) ≥ supk Qk−j;τ = supk Pτ ↑
(k − j) = Pτ ↑ ω = Pσ. The cases where σ is a limit ordinal follow by the
definition of Pτ and results of [9].

A sequence of classes Xξ for ξ ∈ Ord can be coded as a class; in a simple
method, the code X equals {〈ξ, x〉: x ∈ Xξ}. This remains true for classes
Xξ in (i.e., subsets of) Vκ, where ξ < κ. If λ ∈ Inκ (in fact more generally),
X ∩ Vλ = {〈ξ, x〉: ξ < λ, x ∈ Xξ ∩ Vλ}.

Suppose κ is Π1
1-indescribable. Say that X ⊆ κ is Π1

1-enforceable if there
is a Π1

1 formula Φ(P ) with a single class free variable P , and a class P̊ , such
that |=Vκ Φ(P̊ ) and, and for λ ∈ Inκ, if |=Vλ

Φ(P̊ ∩ Vλ) then λ ∈ X. This is a
variation of the definition suitable for the present purposes, and well-known to
be equivalent to other variations (see [11]).

In demonstrating that various predicates are Π1
1, Σ

1
1 functions and ∆1

1 pred-
icates may be used. Some predicates are in fact ∆1

0 (only first order quanti-
fiers). For example, suppose Φ(P1, . . . , Pk) is a formula with several class free
variables. Let P̊ be the code for 〈P̊1, . . . , P̊k〉 as described above. Let Φ′(P ) be
the formula obtained by replacing each subformula w ∈ Pi by 〈i, w〉 ∈ P . The
latter subformula is first order. In particular, multiple first and second order
free variables may be used to specify formulas.

For the next lemma, some facts noted in [7] will be reviewed. There is a
∆1

0 predicate stating that the class X represents a well-order on a subset of
κ. This states that X is a class of ordered pairs, which as a binary relation is
transitive and reflexive, total, and has no descending chains of length ω. The
formula defines the desired class, in any Vκ where κ ∈ Inac.
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There is a ∆1
0 predicate stating that the class X represents a scheme for κ.

Namely, it represents a pair 〈σ, φ〉 where σ is represented as above, and φ is a
function whose domain is the limit points α < σ, where φ(α) is a function with
domain either an ordinal, or all ordinals, etc.

An element Fn ∈ Ln for n > 0 can be coded as a class in Vκ. Indeed, it
may be seen that Fn ⇂ λ ∈ Vλ+1+3n; the code F c

n may be taken as {〈λ, Fn ⇂ λ〉 :
λ ∈ Inκ}. The predicate Appn(G

c
n−1, F

c
n, F

c
n−1〉 where Gn−1 = Fn(Fn−1) is first

order. Also, (Fn ⇂ λ)c = F c
n ∩ Vλ.

Let E0 be the collection of Π1
1-enforceable subsets of κ, and for an integer

n, inductively let En+1 be the elements F ∈ Ln+1 such that F [En] ⊆ En. It is
not difficult to show that for n > 0, Fn ∈ En iff for all 〈Fj : j < n〉 with fj ∈ Ej
for all j < n, Fn(Fn−1) · · · (F1)(X) ∈ E0 (use induction on n).

The following are well-known or follow by straightforward arguments.
• E0 is closed under the operations ∩ξ<ηXξ for η < κ, and △ξ<κXξ.
• For n > 0, En is closed under the operations ∩ξ<ηFnξ for η < κ, and

△ξ<κFnξ.
• For n > 0, En is closed under ◦.
• For n > 0, for any scheme Σ for κ, if F ∈ En then FΣ ∈ En.

Lemma 11. Suppose κ is weakly compact.
1. H ∈ E1.
2. For n ≥ 1, if Fn ∈ En then F ∗ ∈ En.
3. For n ≥ 1, In+1 ∈ En+1.

Proof. Part 1 is well-known. For part 2, suppose Fj ∈ Ej for j < n. Then
|=Vκ ∀Σ(F c

n)
Σ(F c

n−1) · · · (F
c
1 )(X) 6= ∅. Then {λ : |=Vλ

∀Σ(F c
n ∩ Vλ)

Σ(F c
n−1 ∩

Vλ) · · · (F
c
1 ∩Vλ)(X ∩λ) 6= ∅} ∈ E0. So F ∗

n(Fn−1) · · · (F1)(X) ∈ E0. It follows by
remarks above that F ∗ ∈ En. Part 3 follows from part 2.

Lemma 12. If κ is weakly compact then I1;Σ ∈ E1.

Proof. We show by induction that in the clauses in the definition of Ij;Σ,
the left side is in Ej . Clause 1 follows immediately by lemma 11. Clause 2
follows by a straightforward induction. Clause 3, 5, and 6 follows by remarks
preceding lemma 11. Clause 4 is immediate.

Let Pκ+ = sup{Pσ : σ < κ+}.

Theorem 13. If κ is weakly compact then ρ(κ) ≥ Pκ+ .

Proof. This follows using lemmas 10 and 12.
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5. Chains in the Galvin-Hajnal Order

For κ Mahlo, let F denote {f : Inκ 7→ κ : f(λ) < λ++}. The Galvin-Hajnal
order on F will be denoted <∗ as usual. A chain in F is a sequence 〈fξ : ξ ≤ σ〉
such that if ξ′ < ξ then fξ′ <∗ fξ; σ is called the rank of the chain.

A chain will be said to be regular if the following hold inductively.

0 (σ = 0): f0 ≡∗ 0, where 0 denotes the identically 0 function.
1 (σ = τ + 1): fσ ≡∗ fτ + 1.
2 (σ ∈ Lim, Cf(σ) ≤ κ): fσ ≡∗ supξ<σ fξ.

A chain will be said to be representing if it is regular, and for every ξ ≤ σ,
and every normal ultrafilter U on κ, fξ represents ξ in the ultrapower V κ/U .

A chain will be said to be strongly representing if it is representing, and
except for a thin set of λ, if U ′ is a normal ultrafilter on λ, fξ ↾ λ represents
fξ(λ) in V λ/U ′.

Chains (resp. regular chains, representing chains, strongly representing cha-
ins) will also be said to be of type 1 (resp. 2, 3, 4). Given a chain 〈fξ : ξ ≤ σ〉,
for ξ ≤ σ let Sξ denote {λ ∈ Inκ : o(λ) ≥ fξ(λ)}. Trivially, ξ′ < ξ implies
Sξ ⊆t Sξ′ .

For κ is a measurable cardinal, let o(κ) denote the Mitchell order. The
following is an improved version of results from [10], with some inaccuracies in
the proofs corrected.

Theorem 14. Suppose κ is a measurable cardinal, and 〈fξ : ξ ≤ σ〉 is a
strongly representing chain with σ ≤ o(κ). Then Sξ is stationary, and ξ′ < ξ
implies Sξ >R Sξ′ .

Proof. Let U1 be a normal ultrafilter on κ with O(U1) = σ. By lemma 19.34
of [Jech], o represents o(U1) in V κ/U1. In particular {λ ∈ Inκ : o(λ) = fσ(λ)} is
stationary, and the first claim follows. For the second claim, it suffices to show
that for ξ < σ, Sξ+1 ⊆t H(Sξ). Suppose λ ∈ Sξ+1. Then o(λ) ≥ fξ+1(λ) so
except for a thin set of λ there is a normal ultrafilter U ′ on λ with o(U ′) = fξ(λ).
By hypothesis, except for a thin set of λ, fξ ↾ λ represents fξ(λ) in V λ/U ′. It
follows that Sξ ∩ λ ∈ U ′.

Write the Cantor normal form to the base κ+ for the ordinal σ as κ+
ǫk ·

δk + · · ·+κ+
ǫ0 · δ0. For σ < κ+ ↑ ω, cases for a recursion on the Cantor normal

form may be given as follows. In each case, the preceding cases are assumed to
be false.

Case 1: k > 0

Case 2: ǫ0 = 0
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Case 3: δ0 > 1

Case 4: ǫ0 = 1

Case 5: ǫ0 < κ+
ǫ0

For σ < κ+ ↑ ω a function fσ ∈ F may be defined using the above recursion.

1. fκ+ǫk ·δk + · · ·+ fκ+ǫ0 ·δ0

2. fΣ where Σ is a chosen scheme of rank σ
3. fκ+ǫ · fδ
4. fσ(λ) = λ+

5. fσ(λ) = λ+fǫ(λ)

Lemma 15. For σ < κ+ ↑ ω the following hold.

0. f0 ≡∗ 0.
1. fσ+1 ≡∗ fσ + 1.
2. If σ ∈ Lim and Cf(σ) ≤ κ then fσ ≡∗ supσ′<σ fσ′ .
3. If Cf(σ) = κ+ and σ′ < σ then fσ′ ≤∗ fσ.

It follows that 〈fσ〉 is a type 2 chain.

Proof. The proof is by induction on σ. Case 0 is immediate. Remaining
cases will be denoted i.j, where i is the case of the lemma and j is the case of the
Cantor normal form recursion. Case j=1 falls into two subcases, 1.a, ǫ0 = 0,
and 1.b, ǫ0 > 0, In case 1.1.a, fσ+1 ≡∗ fκ+ǫk ·δk + · · ·+ fδ0+1 ≡∗ fσ + 1. In case
1.1.b, fσ+1 ≡∗ fκ+ǫk ·δk + · · · + fκ+ǫ0 ·δ0 + f1 ≡∗ fσ + 1. Case 1.2 is similar to
case 1.1.a, and cases 1.3, 1.4, and 1.5 are similar to case 1.1.b. Case 2.2 follows
by properties of schemes. Cases 2.1.1, 2.1.b, and 2.3 then follow by ordinal
arithmetic. Case 2.4 is impossible. Case 2.5 follows by induction and ordinal
arithmetic. Case 3.4 follows because fσ(λ) < λ+ for σ < κ+. Case 3.5 follows
by induction and ordinal arithmetic.

Lemma 16. If U is a normal ultrafilter on κ then fσ represents σ in
V κ/U . It follows that 〈fσ〉 is a type 3 chain.

Proof. First, if F is a definable function on ordinals and f1, . . . , fn represent
α1, . . . , αn then the function h where h(ξ) = F (f1(ξ), . . . , fn(ξ)) for ξ < κ
represents F (α1, . . . , αn); this follows by Los’ theorem. Second, since U is
normal, the identity function represents κ. Third, by the first fact, fκ+ (more
properly any extension of it to κ) represents κ+. Fourth, if σ < κ+ then
fσ represents σ (induction on Σ; see lemma 6 of [10]). The claim follows by
induction on the five cases of the recursive definition of fσ, using the first fact
for +, ·, and ordinal exponentiation.
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For σ < κ+ ↑ ω, a set Tσ will be defined. An ordinal σ ↓ λ < λ+ ↑ ω will be
defined by recursion on σ, for those λ ∈ Inκ such that λ /∈ Tσ. The definition
is by recursion on the Cantor normal form, with cases as follows.

In case 1, Tσ = ∪iTκ+ǫi ·δi , and σ ↓ λ =
∑0

i=k(κ
+ǫi · δi) ↓ λ.

In case 2, Tσ = TΣ, and σ ↓ λ equals the rank of Σ ↓ λ.

In case 3, Tσ = Tκ+ǫ0 ∪ Tδ0 , and σ ↓ λ = (κ+
ǫ0 ↓ λ) · (δ0 ↓ λ).

In case 4, Tσ = ∅, and σ ↓ λ = λ+.
In case 5, Tσ = Tǫ0 , and σ ↓ λ = λ+ǫ0↓λ.

Lemma 17. For λ /∈ Tσ, fσ ↾ λ = fσ↓λ and fσ(λ) = σ ↓ λ.

Proof. By a straightforward induction on σ, with cases as above.

The following is an improvement to the bound of theorem 11 of [10].

Theorem 18. 〈fσ〉 is a type 4 chain.

Proof. This follows by lemmas 15, 16, and 17

6. Continuity of H∗

In this section some further remarks to those of [9] will be made on the question
of the continuity of the Gaifman operation. The following theorem is a special
case of lemma 4 of of [9]. For convenience a proof is given.

Theorem 19. Suppose Σ is a scheme for κ, X ⊆ In∅κ, and λ ∈ Inκ. If
λ /∈ TΣ and λ ∈ H∗(X) then λ ∈ HΣ(X).

Proof. The proof is by induction on Σ. Case 0 follows by definition of H∗

and H0 = Id. For case 1, by the definition of H∗ and lemma 1 of [DowdIR],
Hτ (X) ∩ λ is stationary. By definition of Tσ, λ /∈ Tτ . It follows inductively
that λ ∈ Hτ (X). Hence, λ ∈ H(Hτ (X)) = Hτ+1(X). For case 2, for any ξ < η,
λ /∈ Tσξ

, so λ ∈ Hσξ(X); thus, λ ∈ ∩ξ<ηH
σξ(X). For case 3, for any ξ < λ,

λ /∈ Tσξ
, so λ ∈ Hσξ(X); thus, λ ∈ △ξ<κH

σξ(X).

The “continuity” of H∗ at a Mahlo cardinal κ is the assertion that, for any
X ⊆ In∅κ, if S ⊆t HΣ(X) for all Σ ∈ Scκ, then S ⊆t H∗(X). The notation
“Gcont” will be used to denote this statement. The following theorem was
stated in [9]; a detailed proof will be given here, along with an additional fact.

Theorem 20. For X ⊆ In∅κ the following are equivalent.
a. If S ⊆t H

Σ(X) for all Σ ∈ Scκ, then S ⊆t H
∗(X).
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b. For any stationary set S such that S ∩ H∗(X) = ∅ there is a stationary
subset S′ ⊆ S and a Σ ∈ Scκ, such that S′ ∩HΣ(X) = ∅.

c. For any stationary set S such that S ∩ H∗(X) = ∅ there is a stationary
subset S′ ⊆ S and a Σ ∈ Scκ, such that ρX∩λ

R (λ) < fΣ(λ) for all λ ∈ S′.

If H∗(X) is stationary these hold iff

d. ρXR (H∗(X)) = κ+.

Proof. a⇔b follows by logic, simple set theory, and the fact that S 6⊆t T
iff S′ ∩ T 6= ∅ for some stationary set S′ ⊆ S. b⇔c follows using lemma 6.
ρXR (H∗(X)) ≥ κ+ because for all Σ, H∗(X)) ⊆t HΣ and ρXR (H∗(X)) = σ.
Suppose ρXR (H∗(X)) > κ+. Let S ⊆ X be a stationary subset such that
S <R H∗(X) and ρXR (S) = κ+. For any Σ ∈ Scκ there is a stationary subset
T ⊆ X such that S ⊆t T and ρXR (T ) = σ. By maximality S ⊆t T ⊆t H

Σ(X).
But clearly S 6⊆t H

∗(X). This proves a⇔d.

Let f+ : κ 7→ κ be the function where f+(α) = |α|+. For a regular uncount-
able cardinal κ, The following two principles may be defined.

D1. If f <∗ f+ then for some Σ ∈ Scκ, {α : f(α) < fΣ(λ)} is club.

D2. If f <∗ f+ then for some Σ ∈ Scκ, {α : f(α) < fΣ(λ)} is stationary.

The names are those used in [3]. D1 is also called the bounding principle. D2
is well-known to be equivalent to the “weak Chang conjecture” at κ (see [5]).

It was claimed in [9] that D2 implies condition (c) of theorem 20. We have
not been able to prove this, but only the following.

Theorem 21. If D1 holds at κ then Gcont holds at κ.

Proof. We may suppose X is stationary, since otherwise Gcont holds triv-
ially. Then X − H(X) is stationary (see theorem 2 of of [9]). Let f(α) equal
ρX∩α
R (α) if α ∈ X − H(X), else 0. Since f < f+, for some Σ, D = {α : f(α) <

fΣ(λ)} is club, and so (X − H(X)) ∩ D is stationary. Thus, condition (c) of
theorem 20 follows from D1.

The fact that D1 is required for the preceding theorem suggests that Gcont
may be false in L. Indeed, it might be possible using the methods of theorems
VI.6.1’ and VII.1.2’ of [4], to construct in L a stationary subset S ⊆ X−H∗(X)
such that S ⊆ HΣ(X) for all Σ in a chain of schemes.

For another fact of interest, it is shown in [1] that if if V = L and κ is not
ineffable (indeed if ♦′′

κ holds), then there is a function f♦ : κ 7→ κ such that
f♦(α) < f+(α) for all α < κ+, and fΣ <∗ f♦ for all Σ. In particular, D2 is false
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at κ. Letting S♦ = {λ ∈ Inκ : ρR(λ) ≥ f♦(λ)}, it follows using lemma 7 that
S♦ ⊆t HΣ(In∅κ) for all Σ. But it is not clear whether S♦ 6⊆t H∗(In∅κ) follows
from the construction of f♦.

Although peripheral to the subject under consideration, the following the-
orem provides an example of another use of lemma 7.

Theorem 22. If κ is the smallest greatly Mahlo cardinal then D1 is false
at κ.

Proof. Since κ is the smallest greatly Mahlo cardinal, ρR(λ) <∗ λ+ for
λ ∈ Inκ. On the other hand, since κ is greatly Mahlo, for any Σ, ρR(κ) > σ, so
by lemma 7 {λ : ρR(λ) ≥ fΣ(λ)} is stationary. Thus, D1 does not hold.

7. Axiom G

In this section some improvements to Section 8 of [8] will be made. For a class
Z let LimZ denote the map X 7→ Lim(X)∩Z. Recall that for F : Pow(Inac) 7→
Pow(Inac), F ∗ is the function such that, for, X ⊆ Inac, F ∗(X) = {κ ∈ Inac∩X :
FΣ(X ∩ κ) is stationary for all Σ ∈ Scκ. For functions F,G from classes to
classes, say that F ⊆ G if F (X) ⊆ G(X) for all X. Familiarity with class
schemes is assumed. The following are readily verified, where Σ is any class
scheme .

• If Y ⊆ Z then LimY ⊆ LimZ.
• If F ⊆ G then FΣ ⊆ GΣ.

Recall the operator H of [8], where κ ∈ H(X) iff κ ∈ Inac ∩X and X ∩ κ
is stationary. It is readily seen that for X ⊆ Inac, H(X) = LimI∗(X). It was
erroneously stated in Section 8 of [8] that LimI∗ equals H0. The fact of interest
is that Mahl = H0(Inac) = H(Inac), so that axioms M1-M4 and G agree.

Following is a generalization of lemma 1 of [8] (which is the case Z = Ord).
An error in the proof of part 2 is repaired.

Lemma 23. Suppose Y ⊆ Z.

0. Y is Y -closed.
1. If X is Y -closed then LimZ(X) is Y -closed.
2. If η ∈ Ord and 〈Xξ : ξ < η〉 is a sequence (coded as a class) of Y -closed

classes then ∩ξ<ηXξ is Y -closed.
3. If 〈Xξ : ξ ∈ Ord〉 is a sequence (coded as a class) of Y -closed classes then

△
ξ∈OrdXξ is Y -closed.
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Proof. In case 0, Lim(Y )∩Y ⊆ Y . In case 1, by hypothesis Lim(X)∩Y ⊆ X.
So Lim(Lim(X)∩Z)∩Y ⊆ Lim(X)∩Y ⊆ Lim(X)∩Z. For case 2, Lim(∩ξXξ)∩
Y ⊆ Lim(Xξ)∩Y ⊆ Xξ for any ξ. For case 3, suppose α ∈ Lim(△ξXξ)∩Y . Let
αη be a sequence in △ξXξ∩Y converging to α. If ξ < α then some suffix of the
sequence converges in Xξ to α, so α ∈ Xξ. But this shows that α ∈ △ξXξ.

Following is a strengthened version of lemma 4 of [8].

Lemma 24. Suppose Y ⊆ Z, and Y is stationary.

0. Y is Y -club.
1. If X is Y -club then LimZ(X) is Y -club.
2. If η ∈ Ord and 〈Xξ : ξ < η〉 is a sequence (coded as a class) of Y -club

classes then ∩ξ<ηXξ is Y -club.
3. If 〈Xξ : ξ ∈ Ord〉 is a sequence (coded as a class) of Y -club classes then

△
ξ∈OrdXξ is Y -club.

Proof. By lemma 23, it suffices to show that the resulting class is un-
bounded. In case 0, Y is unbounded since it is stationary. In case 1, since
Y is stationary Lim(X) ∩ Y is unbounded, whence Lim(X) ∩ Z is unbounded.
For case 2, W = ∩ξ<ηLim(Xξ) is club, so W ∩ Y is unbounded; and W ∩ Y ⊆
∩ξ<ηXξ. For case 3, W = △ξLim(Xξ) is club, so W ∩ Y is unbounded; and
W ∩ Y ⊆ △ξXξ.

Following is a strengthened version of lemma 6 of [8]. An error in the proof
is repaired.

Lemma 25. Suppose Y ⊆ Z ⊆ Inac. The following are equivalent.

a. Y is stationary.
b. For any scheme Σ, LimZΣ(Y ) is Y -club.
c. For any scheme Σ, LimZΣ(Y ) 6= ∅.
d. For any scheme Σ, LimIΣ(Y ) 6= ∅.

Proof. b follows from a by lemma 24. c follows from b trivially. d follows
from c by remarks above. a follows from d by lemma 5 of [8].

Corollary 26. Suppose X ⊆ Z ⊆ Inac, and X is stationary. Then for
any scheme Σ, LimZΣ(X) is stationary.

Proof. This follows by the lemma, and lemma 3 of [8].

Corollary 27. If X ⊆ Z ⊆ Inac then LimZ∗(X) = H(X).
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Proof. κ ∈ H(X) iff κ ∈ X andX∩κ is stationary, iff κ ∈ X and LimZΣ(X∩
κ) is stationary for all Σ ∈ Scκ, iff κ ∈ LimZ∗(X).

Recall that MΣ is defined by recursion on Σ as follows.

0. Inac.
1. LimM∗

Σ≤τ
(MΣ≤τ

).
2. ∩ξ<ηMΣ≤σξ

.

3. △ξ<ηMΣ≤σξ
.

Axiom AΣ is given by the following clauses.

0. MΣ is MΣ-club.
1. If X is MΣ-club then LimMΣ(X) is MΣ-club.
2. If η ∈ Ord and 〈Xξ : ξ < η〉 is a sequence (coded as a class) of MΣ-club

classes then ∩ξ<ηXξ is MΣ-club.
3. If 〈Xξ : ξ ∈ Ord〉 is a sequence (coded as a class) of MΣ-club classes then

△ξXξ is MΣ-club.

It is readily verified that MΣ ⊆ Inac ∪ {0}.

Theorem 28. Suppose Σ is a scheme.

a. MΣ = HΣ(Inac).
b. AΣ holds iff MΣ is stationary.

Proof. Part a follows by induction on Σ, using corollary 27 at stages in case
1. For part b, suppose AΣ holds; then by lemma 25, with Y = Z = MΣ, MΣ is
stationary. Suppose MΣ is stationary; then by lemma 24, with Y = Z = MΣ,
axiom AΣ holds.

It follows that an inaccessible cardinal κ is greatly Mahlo iff Vκ satisfies
axiom G, a question left open in [8].

A justification of axiom G might involve an “informal” induction on Σ.
However, a difficulty arises in justifying the claim that MΣ is unbounded. The
idea is, that V is MΣ; but formulating this seems to involve additional compli-
cations. Axiom G appears likely to be true; but some reformulation might be
required before a sufficiently “rigorous” justification can be given. The axiom
scheme Gs, where Σ is any scheme definable from a parameter, might be justi-
fiable by the methods already considered. Further consideration will be left to
further research.
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8. Another Rank

In [7] an approach was considered to the construction of stationary sets. Some
additional remarks will be made here. Suppose κ ∈ Inac. A superscheme,
of rank σ, for κ, is a pair Σ = 〈σ, φ〉 where σ < κ++ and φ is a function
whose domain is the set of limit ordinals α ≤ σ, of cofinality at most κ. For
α ∈ Dom(φ), φ(α) is as in the definition of a scheme. Sscκ denotes the set of
superschemes for κ.

For convenience conventions as in [7] will be used. A superscheme is used to
iterate H on a subset X ⊆ Inκ. For α ≤ σ a recursive definition will be given of
the result Xα of iterating to stage α. The subset Xα,λ ⊆ λ for each inaccessible
cardinal λ < κ will be defined also.

Xα Xα,λ

α = 0 X X ∩ λ
α = β + 1 H(Xβ) H(Xβ,λ)
Cf(α) < κ ∩ξ<ηXαξ

∩ξ<ηXαξ ,λ if η < λ

X ∩ λ if λ ≤ η < κ
Cf(α) = κ △ξ<κXαξ

△ξ<λXαξ,λ

If Cf(α) = κ+, λ ∈ Xα iff λ ∈ X ∩ κ and Xβ,λ is stationary for all β < α; and
Xα,λ = Xα ∩ λ.

For convenience some theorems from [7] will be reproduced, with some
simplifications and corrections. As an initial observation, Xα ⊆t X andXα,λ ⊆t

X ∩ λ for all λ ∈ Inκ. The proof is a simple induction.
Given Σ ∈ Sscκ, for α < σ define the subset Tα ⊆ κ recursively as follows.

0: ∅.
1: Tβ.
2: (η + 1) ∪ ∪ξ<ηTαξ

.
3: ▽ξ<κTαξ

.
4: ∅.

It is readily verified that Tα is thin.

Theorem 29. Suppose Σ ∈ Sscκ and λ ∈ Inκ. Xα ∩ λ ⊆ Xα,λ, and if
λ /∈ Tα equality holds.

Proof. By induction on α.

If α = 0, X0 ∩ λ = X0,λ by definition.
If α = β + 1, Xβ+1 ∩ λ = H(Xβ) ∩ λ = H(Xβ ∩ λ) ⊆ H(Xβ,λ) = Xβ+1,λ.

Suppose Cf(α) < κ. If η < λ then Xα ∩ λ = (∩ξ<ηXαξ
) ∩ λ = ∩ξ<η(Xαξ

∩
λ) ⊆ ∩ξ<ηXαξ ,λ = Xα,λ. If η ≥ λ the next to last expression may be replaced
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by X0 ∩ λ.
If Cf(α) = κ thenXα∩λ = (△ξ<κXαξ

)∩λ = △ξ<λ(Xαξ
∩λ) ⊆ △ξ<λXαξ ,λ =

Xα,λ.
If Cf(α) = κ+ then Xα,λ = Xα ∩ λ by definition.

It is readily verified in all cases that equality holds if λ /∈ Tα.

Theorem 30. Suppose Σ ∈ Sscκ and β ≤ α < σ. Then Xα ⊆t Xβ.

Proof. Since the claim for β = α is immediate, β < α may be assumed.
The proof is by induction on α.

If α = 0, β = α.
If α = γ + 1, if β ≤ γ then Xα ⊆ Xγ ⊆t Xβ.
Suppose Cf(α) < κ. If β < α then β < αξ for some ξ and Xα ⊆ Xαξ

⊆t Xβ .
Suppose Cf(α) = κ. If β < α then β < αξ for some ξ andXα ⊆t Xαξ

⊆t Xβ .

Suppose Cf(α) = κ+. The claim is proved by induction on β.
If β = 0 then Xα ⊆t X.
For β = γ + 1, suppose λ ∈ Xα. Then except for a thin set of λ, λ ∈ Xβ .

Also, Xβ,λ is stationary, so except for a thin set of λ Xβ ∩λ is stationary. Thus,
except for a thin set of λ, if λ ∈ Xα then λ ∈ HXβ = Xβ+1.

If Cf(α) < κ then inductively on β, Xα ⊆t Xβξ
for ξ < η, whence Xα ⊆t Xβ .

The case Cf(β) = κ is similar to the case Cf(α) < κ.
Suppose Cf(β) = κ+. If λ ∈ Xα then Xγ,λ is stationary for γ < α, and a

fortiori for γ < β, so λ ∈ Xβ; that is, Xα ⊆ Xβ.

As a corollary, if β < α then β + 1 ≤ α, so Xα ⊆t Xβ+1 = H(Xβ), which
shows that Xα >R Xβ. Thus, as long as Xα remains stationary, a superscheme
yields an ascending chain. The “superscheme rank” ρSsc(κ) of an inaccessible
cardinal κ may be defined as the smallest ordinal such that for every ρ′ < ρ
there is a superscheme of rank ρ′ < ρ such that Xρ′ is stationary.

In [7] it was claimed that, mod ≡t, Xα is independent of Σ. However the
proof is not correct, and this question is open.
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