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Abstract: Random numbers are frequently used all around us, but many
people do not know the basis of random numbers. After touching upon prime
numbers and prime number theory, this article explains the principles of random
number generation using primes and primitive roots, and explains how they are
actually handled inside computers.
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1. Random Numbers All Around Us

When you leave yourself logged on to a computer for a while, a screen saver is
activated. This is to prevent an image from being burned onto the screen. There
are a great variety of screen savers, with various different colors and patterns,
but one common feature is that the patterns and coordinates are determined
using random numbers. The coordinate values are likely generated using a
built-in mathematical RAND function. Although many people may know how
to use this function, only a few people know how it works. In mathematics,
random numbers are related to the prime numbers and primitive roots discussed
in elementary number theory, and this time I’d like to think about what’s inside
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the random number black box.

Even without touching a computer, we make great use of random numbers
and the concept of random numbers in daily life. Just a few examples include
the toss of a coin in soccer matches to determine which team can choose to
attack or defend first, the use of dice in sugoroku (a Japanese dice game) and
mah jong, the use of balls with numbers written on them in bingo, and rotating
boards and darts used in some lottery games. The thing that can said to
be common among all of these is that the outcome is not known in advance.
Random numbers are not influenced by previous results, so they can be said to
be independent. And since they do not have regularity, they can be said to be
irregular.

Dice are often used for random numbers. Dice are regular hexahedrons
(cubes), and are capable of generating random numbers between 1 and 6. Dice
have dots engraved in them: 6 is opposite 1, 5 is opposite 2, and 4 is opposite
3, so the total is always 7. In order to maintain the center of mass in the
exact center of a die, the dot representing 1 is slightly larger than the others.
This must be intended to ensure that the numbers from 1 to 6 appear equally
on average. Two dice are used for random numbers larger than 6, and other
regular polyhedra (such as dodecahedra with 12 faces and icosahedra with 20)
are also be used. Books full of random numbers have also been sold in order
to avoid having to throw dice. There was indeed a generation when tables of
random numbers were good business.

Let’s think about the random numbers between 1 and 6 that dice generate.
We could consider various random numbers, but we’ll restrict ourselves to cycles
of 6 here. Let’s line up all the numbers from 1 to 6 randomly.

1, 2, 3, 4, 5, 6

6, 5, 4, 3, 2, 1

1, 3, 5, 2, 4, 6

Looking at these, they don’t seem like random numbers. Random numbers
must be independent; they may not be related to their successors or predeces-
sors. However, when the numbers are lined up like so,

2, 6, 4, 5, 1, 3

they appear to be random. So why were numbers like these generated? We’ll
try to answer that here.



OPENING THE BLACK BOX OF RANDOM NUMBERS 833

2. Primes and Prime Number Theory

Prime numbers are the natural numbers not divisible by any number besides 1
and themselves. For example, 2, 3, 5, · · · and so on, are primes.

[Problem 1] Find all the primes between 1 and 100, and count how many there
are.

One way to check whether or not the natural number n is prime is to try
to divide n by every number from 2 to n − 1. If none of the numbers cleanly
divides it, then it must be prime. Thinking about it carefully, however, it is not
necessary to try every number up to n− 1, and in fact the numbers up to

√
n

are sufficient. Also, by skipping all even numbers, which are divisible by 2, the
result can be obtained more efficiently. The problem of finding all the primes
up to n is often used as a Visual Basic practical exercise.

A method for finding primes has been known since the age of the ancient
Greeks, by using the ‘sieve of Eratosthenes’ (Figure 1). For example, the way to
find the prime numbers up to 30 is as follows. Write out the natural numbers
from 2 to 30. Since 2 is prime, fill in the multiples of 2 in a diagonal line,
4, 6, 8, · · · Next, since 3 is prime, fill in the multiples of 3 in a diagonal line,
6, 9, 12, · · · By working in this way, the numbers that remain will be prime.
While this method is primitive, it does have the advantage that it prevents
oversights. It also wields power when it comes to large computations such as
finding all the primes up to 107, or counting their number.

Figure 1: The sieve of Eratosthenes

Prime numbers may be applied in various ways. When I used to work for
IBM, I knew that prime factorizations have an application in the fast Fourier
transform (FFT). When seismic waves are analyzed in terms of frequency, the
waves may be converted into sine and cosine Fourier series. If there are 1000
points of sample data, it is necessary to perform 1000 calculations. However,
the value of 1024, which is in this neighborhood, has the prime factorization of
210, and while 1024 calculations would normally be necessary, the fast Fourier
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transform, which only requires 10 calculations, may be used. I don’t know the
details of the algorithm, but I can say that it makes practical use of prime
numbers. The fast Fourier transform was discovered by J. W. Cooley and John
Tukey in 1965.

Many aspects of prime numbers have been researched over a long period.
One of these is the prime number theorem, which states what proportion of the
natural numbers are prime, and was predicted by Gauss in 1792. It was later
proven independently by both Hadamard and Poussin in 1896. It is expressed
explicitly by the following formula. Regarding the number of primes between 1
and x, denoted π(x),

π(x) ≈ x

log x
( log x indicates the natural logarithm).

Calculating the actual value for x < 1000 reveals that this formula is relatively
accurate, but for x > 105 however, it is insufficient. A more accurate formula
can be obtained using the logarithmic integral,

Li(x) =
x

log x
+

1!x

log2 x
+ · · ·+ (k − 1)!x

logk x
+O(

x

logk+1 x
).

The actual number of primes up to the natural number x, the approximate
number according to the prime distribution function, and the approximate num-
ber according to the improved formula are shown in Table 1. Li(x) is taken
as the sum up to the 9th term for x = 105, up to the 10th term for x = 106,
and up to the 12th term for x = 107. It is thought that this formula is usually
accurate for large values of x.

x Actual number
x

log x
Li(x)

10 4 4
100 25 22
1000 168 145
104 1229 1086
105 9592 8686 9628
106 78498 72382 78627
107 664579 620421 664915

Table 1. Number of primes, actual and approximated
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3. Complex Factors and Prime Numbers

In our discussion of prime numbers, let us touch upon complex factors. Numbers
that are only divisible by 1 and themselves are called prime numbers, and we
know that 2, 3, 5, · · · are prime. How about expanding numbers in the complex
realm? From 2, 3, 5, · · · the numbers 2 and 5 can be factorized as

2 = (1 + i)(1 − i),

5 = (2 + i)(2 − i),

so 2 and 5 are no longer prime. It feels a bit strange but this is the truth
according to complex numbers. There is such a thing as a prime factorization
under complex numbers. 32 + 22i is factorized as follows

32 + 22i = 2(16 + 11i) = (1 + i)(1 − i)(2 + 3i)(5 − 2i).

In this case the complex numbers 1+ i, 1− i, 2+3i and 5−2i are the prime
factors.

Among the real numbers, the fundamental number is 1. In the case of com-
plex numbers, there are four fundamental numbers, 1, −1, i, and −i. Numbers
which can only be divided by these four factors and themselves are consid-
ered prime. By making a computer program using the method of the sieve of
Eratosthenes introduced above, it is possible to construct a two dimensional
diagram of the complex numbers that are prime (Figure 2). If you actually
make the diagram, you will see that it has a pattern like a tablecloth, and has
a rather nice mathematical appearance. Consult reference (see Izumori, 1991)
for information regarding the construction of a suitable BASIC program.[1]

4. Primes and Primitive Roots

Leaving the discussion of primes at this point, I’d now like to explain about the
pseudo-random numbers that were mentioned at the outset. The numbers 1 to
6 are marked on the faces of dice, and if a sequence like

2, 6, 4, 5, 1, 3

is generated by some method, they are well suited for use as random numbers.
So what is involved in such a method? For primes there are such things as
‘primitive roots’. For example, 3 is a primitive root of the prime number 7.
Let’s use this relationship to try and generate some pseudo-random numbers.
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Figure 2: Complex prime numbers

31 = 3

32 = 9 ≡ 2 mod 7

33 = 2× 3 = 6

34 = 6× 3 = 18 ≡ 4 mod 7

35 = 4× 3 = 12 ≡ 5 mod 7

36 = 5× 3 = 15 ≡ 1 mod 7

The following sequence of random numbers is thus generated in this way.

3, 2, 6, 4, 5, 1

The manner of calculation is repeated multiplication by 3. When the result
is greater than 7, a multiple of 7 is subtracted and the remainder is taken as
the answer. After repeating this calculation 6 times, the result returns to 1.

This is called a linear congruential generator. In this case, the last number
is 1, so to avoid this, if the initial value is taken as 32 ≡ 2 mod 7 then the
sequence becomes

2, 6, 4, 5, 1, 3.

The random numbers from 1 to 6 can be generated from the prime number 7.
Putting it another way, the numbers 31, 32, 33, 34, 35, 36 with 7 as a modulus
can be said to constitute a cyclic group.

For a prime number p and coprime number r, the relationship rp−1 ≡
1 mod p is satisfied. This is known as Fermat’s little theorem. The reason
that the theorem is described as ‘little’ is to distinguish it from the famous
Fermat’s last theorem. This congruence expression may have solutions of the
form ri ≡ 1 mod p for i < p − 1, but r is only a primitive root of p when the



OPENING THE BLACK BOX OF RANDOM NUMBERS 837

expression is satisfied for i = p − 1. For the prime number 7, besides 3, 5 is
also a primitive root. The primitive roots of the primes 3, 5, 7, 11 and 13 are
shown in Table 2.

[Problem 2] Using the fact that 6 is a primitive root of the prime number 11,
generate a pseudo-random sequence from 1 to 10.

p(prime) r(primitive root)

3 2
5 2, 3
7 3, 5
11 2, 6, 7, 8
13 2, 6, 7, 11

Table2. Primes and primitive roots

5. Random Numbers on Computers

The explanations above deal with the principles of random number generation,
but how are random numbers actually handled inside computers? Computers
have built-in functions such as RAND for generating random numbers in the
interval (0, 1). Integer random numbers are generated first, and then divided by
the largest possible number to calculate a random real number in the interval
(0, 1). I don’t know the details of the algorithm used in the Visual BASIC
built in RAND function, but one well-known pseudo-random number generation
algorithm is as follows. All such random number algorithms involve the concept
represented by the following congruence equation.

Xi = (aXi−1 + c) mod M (a and c are constants)

After setting Xi−1 to some value, it is multiplied by a. If this value exceeds
M , it is divided by M and the remainder is given as the value of Xi. Random
numbers are generated one after the other using this iterative formula.

The variables handled by programs include real number types and integer
types. Integer type random numbers use 4 bytes (i.e., 32 bits). The number
of different values that can be represented with 32 bits is a power of 2, but
one bit at the head is the ‘sign bit’. A 0 signifies a positive number, while a
1 signifies a negative number. The actual values are expressed using the 31
bits that remain after excluding this one sign bit. Assuming that the random
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numbers are positive, the largest number that can be represented by 31 bits
is 231 − 1 = 2147483647. By generating random numbers in the interval 1 to
231 − 1 using the congruence expression explained above and dividing them by
this largest number, random numbers can be generated in the interval (0, 1).

The problem is then how to select the prime p and the primitive root r.
The value of the largest integer-type variable is 231 − 1. The primes that can
be expressed in the form 2p − 1 are known as Mersenne numbers. There are 23
Mersenne numbers existing in the range p < 11400, including

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, · · ·

These values of p do not include all the primes.
Fortunately, the largest number that can be expressed with 31 bits, 231−1,

is a Mersenne number and is prime. It is therefore useful to obtain the primitive
roots of 231 − 1. As shown in Table 2, the number of primitive roots is not just
1. For small prime numbers, the primitive roots may be obtained easily, but for
a number like 231 − 1 which has 10 digits in base 10, it’s not so easy to obtain
them and we must rely on the help of a computer.

S.K. Park and K.W. Miller used M = 231 − 1 as a prime, and a = 75 as a
primitive root in the formula

Xi = 75Xi−1 mod (231 − 1).

As mentioned in reference (see Park and Miller, 1988), [2] finding suitable
pairs of primes and primitive roots is difficult. 231 − 1 = 2147483647 is prime,
but the primitive root 75 = 16807 is not prime. The numbers M = 231 − 1
and a = 75 used in the congruence formula are coprime, so the above stated
Fermat’s little theorem is satisfied. That is,

(75)2
31
−2 ≡ 1 mod (231 − 1).

This is satisfied without the need for calculation, but actually verifying
it with a computer confirms that after 231 − 2 iterations, the value returns
to 1 for the first time. Because the result does not return to 1 at any point
before231 − 2 iterations, it passes through every possible value and is thus an
excellent primitive root.

The method above has a cycle length of 231−2 which prompts no complaints,
but its weak point is that the division calculation required by the mod (231−1)
operation takes time. This issue is addressed by IBM’s well-known improved
RANDU subroutine (1970). The RANDU congruence expression is given by
the following formula.

Xi = 65539Xi−1 mod 231
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M = 231 (= 2147483648) is not prime, so Fermat’s little theorem does not
apply, but a = 216 + 3 (= 65539) is prime, and M is coprime with a, so
the generation of random numbers with a large cycle length can be expected.
Confirming this with a computer revealed that

(216 + 3)2
29 ≡ 1 mod 231.

The cycle length is a quarter of the maximum cycle length, which is a
relatively long cycle.

From a mathematical perspective it is beneficial to choose a prime for M .
In the case of RANDU however, the divisor 231 is not prime. The reason it
was chosen is surely because it yields an efficient division calculation. Inside a
computer, a division by 231 is performed using a machine instruction that slides
a binary number 31 bits to the right. This uses a shift register. Leaving the
details for another time, suffice it to say that this method has the advantage of
being an especially fast computation. But RANDU belongs to the year 1970.
As computer technology develops, the speed of computation increases and this
kind of ingenuity is no longer necessary. Due to the lack of precision in the
random numbers generated by RANDU, other methods are now in use.

Random numbers are generated using primes and primitive roots. Perhaps
by knowing this mechanism, one may understand and appreciate the wonder of
mathematics.
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