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1. Introduction

We know about historically famous theories in mathematics, but there are many
cases where we don’t know the proofs. Fermat’s last theorem, Galois’ theorem,
Gödel’s incompleteness theorem..., once you start, there’s nowhere to stop. Un-
til recently I did not know the proof supporting Gauss’ method for constructing
a regular heptadecagon - a polygon with 17 sides. The construction method
for an arbitrary regular n-sided polygon may be explained as follows, according
to the ‘Dictionary of Mathematics’ (Iwanami Shoten Publishing). The neces-
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sary and sufficient conditions for a regular n-sided polygon to be possible to
construct were established by Gauss. Given the prime factorization of n ,

n = 2λP1 · · ·Pk (λ ≥ 0) (1)

all of P1, · · · , Pk must be distinct primes taking the form 2h + 1 (Fermat num-
bers). Inserting values for λ and h into this formula, the following values may
be obtained for n.

n = 3, 4, 5, 6, 8, 10, 12, 15, 17, · · ·

When I reproduced the following quote from a certain document, “It is well-
known that Gauss obtained a geometrical method for constructing a regular
heptadecagon”, I received the query, “By the way, how do you construct the
regular heptadecagon?” I had copied verbatim from the dictionary, and didn’t
know the answer. The construction methods for regular triangles and regular
pentagons were established by Euclid, the ancient Greek. However, considering
whether we in our generation have completely mastered even the construction
of regular pentagons, it is doubtful. For the regular pentagon, there are two
construction methods. One begins by establishing a single edge, while the
other contacts a circle internally. Neither requires a protractor, and both may
be drawn using only a pair of compasses and a ruler. Since it’s not the main
topic of this chapter the explanation is abbreviated, but it utilizes the facts
that

cos
π

5
=

1 +
√
5

4
(2)

and

sin
π

5
=

√

10− 2
√
5

4
. (3)

I am not an algebra specialist, so in the explanation that follows I’d like for
the reader to understand the construction method for the regular heptadecagon
attempted by Gauss as far as I have investigated it.

2. From Gauss’ Diary

Chapter 1 of Takagi Teiji’s ‘History of Modern Mathematics’ reports that when
on the 30th March 1796, the 19-year-old Gauss opened his eyes and arose from
his bed, a method for the outstanding problem of constructing a regular hep-
tadecagon occurred to him and was thus recorded in his diary. An outline of
the method goes as follows.[3]
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If it is only required to prove the possibility of constructing a regular hep-
tadecagon, the solution is clear and simple. Taking

360◦ = 17φ,

if the value of cosφ may be expressed as a square root then it is possible
to construct the figure. cosφ represents the x coordinate of a point on the
circumference of a unit circle. Gauss demonstrated the computational process.
Let’s build on the explanation by looking at the method.

Firstly, Gauss made the following definitions.

cosφ+ cos 4φ = a,

cos 2φ+ cos 8φ = b,

cos 3φ+ cos 5φ = c,

cos 6φ+ cos 7φ = d.

The thing to pay attention to here is the substitution of the parameters
a, b, c, d for the values of cosφ to cos 8φ . Perhaps this kind of substitution is
only applied to this problem. If these are combined at random, then in total
there are 8C2× 6C2× 4C2 = 2520 possibilities. Do you think Gauss might have
investigated every case? He did not. We will look at this issue in detail later,
and it is closely related to the theory of cyclotomic equations.

Next, setting

a+ b = e,

c+ d = f,

then as is widely known,

e+ f = −1

2
. (1)

In order to understand Equation (1) it’s sufficient to remember a problem
which often comes up in university entrance examinations.

Theory. For natural number n, setting

Sn = cosφ+ cos 2φ+ · · ·+ cosnφ,

implies that

2Sn sin
φ

2
= sin

2n+ 1

2
φ− sin

φ

2
.
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The proof of this theory involves the application of the product → sum

formula for 2 cos kφ sin
φ

2
(k = 1, · · · , n), so that the intermediate term vanishes

and the formula is simplified. Then, substituting n = 8, φ =
2π

17
into

Sn = (sin
2n+ 1

2
φ− sin

φ

2
)/2 sin

φ

2

yields sin
2n + 1

2
φ = 0 . Therefore, S8 = −1

2
.

The products formed by each pair among a, b, c, d may now be obtained.
By means of a simple calculation, and taking note of the fact that cosnφ =
cos(17− n)φ the results are

2ab = e+ f = −1

2
,

2ac = 2a+ b+ d,

2ad = b+ c+ 2d,

2bc = a+ 2c+ d,

2bd = a+ 2b+ c,

2cd = e+ f = −1

2
.

Looking at one of the equations above, for example, 2ab, it is obtained as
follows

2ab = 2(cosφ+ cos 4φ)(cos 2φ+ cos 8φ)

= 2 cosφ cos 2φ+ 2cos φ cos 8φ+ 2cos 4φ cos 2φ+ 2cos 4φ cos 8φ

= (cos 3φ+cosφ)+ (cos 9φ+cos 7φ) + (cos 6φ+cos 2φ)+ (cos 12φ+cos 4φ).

Here the substitution cos 9φ = cos 8φ, cos 12φ = cos 5φ is made, and the
result rearranged, yielding

= (cos φ+ cos 4φ) + (cos 2φ+ cos 8φ) + (cos 3φ+ cos 5φ) + (cos 6φ+ cos 7φ)

= a+ b+ c+ d

= e+ f

= −1

2
ergo,

2ac+ 2ad+ 2bc+ 2bd = 4a+ 4b+ 4c+ 4d,
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i.e.,

2ef = −2,

or alternatively,

ef = −1. (2)

The following is a solution method utilizing the relationship between the
solutions and factors of 2nd order equations. In particular, from (1) and (2),
the equations for e and f are the roots of

x2 +
1

2
x− 1 = 0.

One is thus −1

4
+

√

17

16
, while the other is −1

4
−

√

17

16
. A glance is sufficient

to reveal from their values that the first is e, and the second is f .
Now, the following equation has roots a and b.

x2 − ex− 1

4
= 0.

The values of the roots are

1

2
e±

√

1

4
+

1

4
e2 = −1

8
+

1

8

√
17± 1

8

√

34− 2
√
17.

It is clear here that a is the upper (positive) sign, and b is the lower (nega-
tive) sign. The reason is that, trivially,

a− b = (cosφ− cos 2φ) + (cos 4φ− cos 8φ)

so in exactly the same way,

c = −1

8
− 1

8

√
17 +

1

8

√

34 + 2
√
17,

and

d = −1

8
− 1

8

√
17− 1

8

√

34 + 2
√
17

Now finally, cosφ and cos 4φ are clearly the roots of the following 2nd order

equation (because the product cosφ · cos 4φ =
1

2
c).

x2 − ax+
1

2
c = 0
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Consequently,

cosφ = +
1

2
a+

√

1

4
a2 − 1

2
c ,

and

cos 4φ = +
1

2
a−

√

1

4
a2 − 1

2
c .

Rearranging however yields,

2a2 = 2 + b+ 2c

so,

cosφ =
1

2
a+

√

1

4
+

1

8
b− 1

4
c = − 1

16
+

1

16

√
17 +

1

16

√

34− 2
√
17

+
1

8

√

17 + 3
√
17 −

√

34− 2
√
17− 2

√

34 + 2
√
17

which is the value Gauss obtained for cosφ.

3. Gauss’ Theory of Cyclotomic Equations

We have seen how the value of cosφ needed for the construction of a regular
heptadecagon can be obtained, but this calculation was just a confirmation. So
far we have not even touched upon the essential question of why it turns out
as it does, i.e., the reason for the substitution of the four parameters a, b, c, d
for the terms from cosφ to cos 8φ must be stated.

The reason is not written in Gauss’ diary. In order to find out, one must
enlist the help of Kurata Reijirou’s ‘Gauss’ Theory of Cyclotonic Equations’,[2]
or ‘Gauss’ Theory of Numbers’ translated by Takase Masahito.[1] Think about
the following equation.

xn − 1 = 0 (4)

It goes without saying that the roots of this equation are the nth roots of 1,
and as is widely known,

e
2πki

n (k = 0, 1, 2, · · · , n− 1).

This has a relationship with Euler’s equation.

eiθ = cos θ + i sin θ (5)

Among the n roots, those which first equal 1 when raised to the power n

are known as the primitive nth roots of unity. e
2πi

n is a primitive nth root of
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unity. This is a point with angle
2π

n
on a unit circle in the complex plain, i.e.,

it expresses an nth equal part of a complete circumference. e
2πki

n expresses the
point on the circumference with k-times the angle.

Through the intermediate agency of the complex plain, Equation (4) is tied
to th n-sided regular polygon figures originating in ancient Greece. This was
Gauss’ underlying perspective, and the first mathematician to introduce the
complex plain was Gauss.

Now, Equation (4) is

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1),

so excluding 1, all the roots of Equation (4) are roots of the following function.

F (x) = xn−1 + xn−2 + · · ·+ x+ 1 (6)

This is known as a cyclotomic equation, or alternatively, as a circle-partitio-
ning equation.

In xn−1 = 0 , if a primitive nth root of unity, denoted ω , is already known,
then the solutions of this equation are

1, ω, ω2, · · · , ωn−1.

For example, thinking about x3 − 1 = 0 ,

x3 − 1 = (x− 1)(x2 + x+ 1) = 0,

so the 3rd root is 1,
−1±

√
3i

2
. Taking

−1 +
√
3i

2
= ω, we have

−1−
√
3i

2
= ω2,

and it can be seen that the roots are 1, ω and ω2. In this case, 3θ = 2π so

ω = cos θ + i sin θ = eiθ

ω2 = cos 2θ + i sin 2θ = ei2θ

ω3 = cos 3θ + i sin 3θ = ei3θ = 1

and it can be seen that the 3 roots cycle.
At this point I’d like to introduce the following theorem which utilizes the

concept of a remainder.

Theorem. When p is a prime number, the set of roots of the cyclotomic
equation

F (x) = xn−1 + xn−2 + · · · + x+ 1.
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may be written as Ω, and apart from 1, all the elements r ∈ Ω (which satisfy
xn − 1 = 0) are complex numbers. Furthermore, for a positive or negative
integer e which is not divisible by p, the following are satisfied.

(1) rp = 1, r2p = r3p = · · · = 1, rep = 1;

(2) for integers λ and µ

λ ≡ µ (mod p) ⇔ rλ = rµ;

(3) for r ∈ Ω

Ω = {re, r2e, · · · , re(p−1)}, re + r2e + · · ·+ re(p−1) = −1.

Gauss defined a parameter with a value representing an f -step cycle.

Definition. For an odd prime p, and a primitive pth root of unity, denoted
r, and taking p − 1 = fe, g as a primitive root of p, and λ as an arbitrary
integer, the value of the f -step cycle, denoted (f, λ), is defined as follows

(f, λ) = [λ] + [λh] + [λh2] + · · ·+ [λhf−1]

(note that h = ge).
At this point let’s perform the calculation for a regular heptadecagon. Tak-

ing 3 as a primitive root of the prime number 17,

p = 17, p − 1 = 16 = 16× 1 = f × e, g = 3, h = ge = 31 = 3,

and the 16-step cycle is as follows.

(16, 1) = [1] + [3] + [9] + [10] + [13] + [5] + [15] + [11] + [16] + [14]
+[8] + [7] + [4] + [12] + [2] + [6]

That is to say, when 3 is taken as the primitive root for {[1], · · · , [16]}, the result
is a cyclic group modulo 17. For example, the 4th term on the right-hand side
of the equation above, [10], can be obtained as

λh3 = 1× 33 = 27 = 10 (mod17).

An explanation of primitive roots, modulo, and cyclic groups is deferred to
books specialized in algebra, number theory, groups, and so on.

At any rate, primes and primitive roots have a truly ingenious relationship.
I first heard of the term ‘primitive root’ when I studied subroutines for gen-
erating pseudorandom numbers on computers. As a consequence, computers
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can be made to generate randomly ordered sequences of all the integers they
are capable of expressing. For the problem in question, the significant point
is that the 16 roots can be reordered according to the concept of remainders.
This was how the 16-step cycle could be obtained. Gauss presented a theory
decomposing an f -step cycle.

Theorem. When p−1 = abc, the bc-step cycle (bc, λ) is the sum of b c-step
cycles

(bc, λ) = (c, λ) +
(

c, λga
)

+
(

c, λg2a
)

+ · · ·+
(

c, λga(b−1)
)

Let’s attempt a decomposition of the 16-step cycle into 2 8-step cycles as
described on p27-28 of reference (Kurata, 1988).[2] From p = 17, p − 1 = 16 =
1× 2× 8 = a× b× c,

(16, 1) = (8, 1) + (8, 3).

Defining (8, 1) and (8, 3) we have the following equations.

(8, 1) = [1] + [9] + [92] + [93] + [94] + [95] + [96] + [97]

= [1] + [9] + [81] + [729] + [6561] + [59049] + [531441] + [4782969]

= [1] + [9] + [13] + [15] + [16] + [8] + [4] + [2] (mod17)

= [1] + [2] + [4] + [8] + [9] + [13] + [15] + [16]

(8, 3) = [3] + [3 · 9] + [3 · 92] + [3 · 93] + [3 · 94] + [3 · 95] + [3 · 96] + [3 · 97]
= [3] + [27] + [243] + [2187] + [19683] + [177147] + [1594323]

+[14348907]

= [3] + [10] + [5] + [11] + [14] + [7] + [12] + [6] (mod17)

= [3] + [5] + [6] + [7] + [10] + [11] + [12] + [14]

Here, the 16-step cycle (16, 1) is decomposed into 2 8-step cycles, (8, 1)
and(8, 3). If the decomposition theory is applied repeatedly, the decomposition
can be continued down to a final 1-step cycle. Figure 1 shows a breakdown of
the whole decomposition process. The parameters a, b, c, d, e, f and values of
cosφ to cos 8φ recorded in “Gauss’ diary” are compiled in this figure. Can you
understand the reason why Gauss chose the values

cosφ+ cos 4φ = a, cos 3φ+ cos 5φ = c,
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cos 2φ+ cos 8φ = b, cos 6φ+ cos 7φ = d

a+ b = e, c+ d = f

by means of this result?

For p = 17, the 16 roots besides 1 may be calculated as shown in Table 1, in
a similar way. Figure 2 shows a diagram of a regular heptadecagon. By means
of such a decomposition, it becomes possible to factorize the 2nd term on the
right-hand side of the equation

Figure 1: x17 − 1 = (x− 1)(x16 + x15 + · · ·+ x+ 1).

Why it turns out like this, at present, I do not know. In order to find out it will
be necessary to make further detailed study, and this is surely a place where
the profound beauty of algebra lies. I have a feeling that I have experienced a
glimpse of this beauty.
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Figure 2: The decomposition process of the f -step cycle

[1], [16] 0.9324722294 ± 0.3612416662i
[2], [15] 0.7390089172 ± 0.6736956436i
[3], [14] 0.4457383558 ± 0.8951632914i
[4], [13] 0.0922683595 ± 0.9957341763i
[5], [12] −0.2736629901 ± 0.9618256432i
[6], [11] −0.6026346364 ± 0.7980172273i
[7], [10] −0.8502171357 ± 0.5264321629i
[8], [9] −0.9829730997 ± 0.1837495178i

Table 1. The 16 roots

4. Constructing roots, and more...

The value of cosφ was expressed using roots, so let’s look at their construction
process specifically. Construction problems in mathematics are not solved by
calculating numerical values using a computer and drawing diagrammatic illus-
trations. The figure must be drawn using only a ruler and compasses, and given
two points on a plane (points 0 and 1, i.e., a line segment) as a unit length.
The ruler is only used for drawing straight lines, and is considered incapable of
measurement.

The problem is then how to draw the figure using root lengths. It is possible
to construct the length of any root, in a manner similar to those shown in Figure
3. First, a unit square is drawn. By the triple angle theory, the diagonal edge
has length

√
2. Secondly, a circular arc with radius

√
2 is drawn, and this length

is transferred to the line extended from the base edge of the square. In this
way, a rectangle with height 1, and width

√
2 can be constructed.
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Once again applying the triple angle theory to this rectangle, the length of
the diagonal is

√
3. By proceeding in this manner, the lengths

√
4,
√
5,
√
6,
√
7

and so on can be obtained. The construction of the length
√
17 can also be

thus achieved.
Next, rather than the roots of integers, let’s think about the construction

of roots of arbitrary numerical values. Pages 50-51 of Kurata (1988) discuss
this in more detail and contain an explanation of how to construct fractions

(of the form
a

b
) and roots (of the form

√
a). See Figures 4 and 5. Even in the

present age, when computers have advanced so far, the construction method
for the regular heptadecagon discovered by Gauss around 200 years ago in 1796
still impresses anew. For me it simply reaffirmed Gauss’ magnificent mental
capacity and creative abilities.[?]

Figure 3: The length of a root

Figure 4: The construction of a fraction (
a

b
)
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Figure 5: The construction of a root (
√
a)
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