Abstract: Recently an algebra based on proportional calculi was introduced by Tamilarasi and Mekalai in the year 2010 known as TM–algebras [3]. Kanadaraj and Chandramouleeswaran [5] introduced the notion of derivation on d–algebras. In [6], we introduced the notion of derivations on TM-algebras. In this paper, we introduce the notion of t–derivation on TM-algebras. We study the properties of regular t–derivations on a TM-algebra and prove that the set of all t–derivations on a TM-algebra forms a semigroup under a suitable binary composition.

AMS Subject Classification: 03G25, 06F35
Key Words: BCK/BCI algebras, TM-algebras, derivations, t–derivations

1. Introduction

It is well known that BCK and BCI-algebras are two classes of algebras of logic. They were introduced by Imai and Iseki [1] and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper sub class of the BCI-algebras. J.Neggers and H.S.Kim [2] introduced the notion of d–algebras which is another generalization of BCK–algebras.
Recently another algebra based on proportional calculi was introduced by Tamilarasi and Mekalai in the year 2010 known as TM–algebras. In their paper [3] they claimed that TM–algebra was the generalization of BCK and BCI algebras. But this was proved wrong in [4], by giving counter examples.

Motivated by the notion of derivations on rings and near-rings Jun and Xin [7] studied the notion of derivation on BCI-algebras. In [5], the authors introduced the notion of derivation on d–algebras, another generalisation of BCK-algebras.

In our paper [6], we introduced the notion of derivation on TM–algebras. In this paper, we introduce the notion of t–derivation on TM-algebras. We study the properties of regular t–derivations on X and prove that the set of all t–derivations on a TM-algebra X forms a semigroup under a suitable binary composition.

2. Preliminaries

In this section, we recall some basic definitions and results that are needed for our work.

Definition 2.1. A TM–algebra $(X, *, 0)$ is a non-empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:

1. $x * 0 = x$

2. $(x * y) * (x * z) = z * y \forall x, y, z \in X$.

Lemma 2.2. The following properties hold in a TM–algebra X.

1. $x * x = 0$.

2. $(x * y) * x = 0 * y$.

3. $x * (x * y) = y$.

4. $(x * y) * z = (x * z) * y$.

5. $x * 0 = 0 \Rightarrow x = 0$. In other words $x \leq 0 \Rightarrow x = 0$.

6. $0 * (x * y) = y * x = (0 * x) * (0 * y)$.

7. $(x * z) * (y * z) = (x * y)$.
Remark 2.3. In a TM–algebra X, by definition, $x \land y = y \ast (y \ast x)$. However, by property (3) above, we have $x = y \ast (y \ast x)$. Hence, in a TM-algebra we have $x \land y = x \ \forall \ x, y \in X$.

Definition 2.4. In any TM–algebra X, we define a partial order \leq by putting $x \leq y$ if and only if $x \ast y = 0$.

Definition 2.5. A non-empty subset S of a TM–algebra $(X, \ast, 0)$ is said to be a subalgebra of X if $x \ast y \in S$ whenever $x, y \in S$.

Definition 2.6. Let $(X, \ast, 0)$ be a TM–algebra. A self map $d : X \to X$ is said to be a (l, r)–derivation on X, if $d(x \ast y) = (d(x) \ast y) \land (x \ast d(y))$. d is said to be a (r, l)–derivation on X, if $d(x \ast y) = (x \ast d(y)) \land (d(x) \ast y)$. It is said to be a derivation on X if d is both a (l, r)–derivation and a (r, l)–derivation on X.

3. t–Derivations on TM–Algebra

Definition 3.1. A TM–algebra X is said to be associative if $(x \ast y) \ast z = x \ast (y \ast z)$ for all $x, y, z \in X$.

Example 3.2. Let $(X, \ast, 0)$ be a TM–algebra with the Cayley table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Then X is an associative TM–algebra.

Definition 3.3. Let X be a TM–algebra. Then for any $t \in X$, we define a self map $d_t : X \to X$ by $d_t(x) = x \ast t$ for all $x \in X$.

Definition 3.4. Let X be a TM–algebra. Then for any $t \in X$, a self map $d_t : X \to X$ is called a $(l, r) – t$–derivation of X if it satisfies the condition $d_t(x \ast y) = (d_t(x) \ast y) \land (x \ast d_t(y))$ for all $x, y \in X$.

Example 3.5. Let $(X, \ast, 0)$ be a TM–algebra with the following Cayley table.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Define, when \(t = 0 \), \(d_t(x) = x \ \forall \ x \in X \).

when \(t = 1 \), \(d_t(0) = 2, \ d_t(1) = 0, \ d_t(2) = 1 \).
when \(t = 2 \), \(d_t(0) = 1, \ d_t(1) = 2, \ d_t(2) = 0 \).
For each \(t \in X \), \(d_t \) is a \((l, r) - t\) derivation of \(X \).

Remark 3.6. In a \(TM \) algebra, \(x \wedge y = y \ast (y \ast x) = x \ \forall \ x, y \in X \). We can observe that by using the above property we take \(d_t \) is a \((l, r) - t\) derivation of \(X \) then \(d_t(x \ast y) = d_t(x) \ast y \).

Definition 3.7. Let \(X \) be a \(TM \) algebra. Then for any \(t \in X \) a self map \(d_t : X \rightarrow X \) is called a \((r, l) - t\) derivation of \(X \) if it satisfies the condition \(d_t(x \ast y) = (x \ast d_t(y)) \wedge (d_t(x) \ast y) \) for all \(x, y \in X \).

Remark 3.8. We can observe that, if \(d_t \) is a \((r, l) - t\) derivation of \(X \), then \(d_t(x \ast y) = x \ast d_t(y) \) for all \(x, y \in X \).

Definition 3.9. Let \(X \) be a \(TM \) algebra. Then for any \(t \in X \), a self map \(d_t : X \rightarrow X \) is called a \(t \) derivation on \(X \) if \(d_t \) is both a \((l, r) - t\) derivation and a \((r, l) - t\) derivation on \(X \).

Example 3.10. Consider the \(TM \) algebra \((X, \ast, 0)\) in 3.2. Define the mapping \(d_t \) as follows:

When \(t = 0 \), \(d_t(x) = x \ \forall \ x \in X \).
When \(t = 1 \), \(d_t(0) = 1, \ d_t(1) = 0, \ d_t(2) = 3, \ d_t(3) = 2 \).
When \(t = 2 \), \(d_t(0) = 2, \ d_t(1) = 3, \ d_t(2) = 0, \ d_t(3) = 1 \).
When \(t = 3 \), \(d_t(0) = 3, \ d_t(1) = 2, \ d_t(2) = 1, d_t(3) = 0 \).
For each \(t \in X \), \(d_t \) is a \(t \) derivation of \(X \).

Remark 3.11. Any self map \(d_t \) of a \(TM \) algebra \(X \) is a \((l, r) - t\) derivation on \(X \).

Proposition 3.12. Let \(d_t \) be a self map of an associative \(TM \) algebra \(X \). Then \(d_t \) is a \((r, l) - t\) derivation of \(X \).

Proof. Let \(X \) be an associative \(TM \) algebra. Then we have

\[
\begin{align*}
 d_t(x \ast y) &= (x \ast y) \ast t \\
 &= (x \ast t) \ast y \quad (\therefore (x \ast y) \ast z = (x \ast z) \ast y) \\
 &= ((x \ast t) \ast y) \ast 0 \\
 &= (((x \ast t) \ast y) \ast ((x \ast t) \ast y) \ast ((x \ast t) \ast y)) \\
 &\quad (\therefore x \ast x = 0) \\
 &= (((x \ast t) \ast y) \ast ((x \ast t) \ast y) \ast ((x \ast y) \ast t)) \\
 &\quad (\therefore (x \ast y) \ast z = (x \ast z) \ast y)
\end{align*}
\]
\[
\begin{align*}
&= ((x * t) * y) * (((x * t) * y) * (x * (y * t))) \\
&= (x * (y * t)) \land ((x * t) * y) \\
&= (x * d_t(y)) \land (d_t(x) * y)
\end{align*}
\]
\[
\therefore d_t \text{ is a } (r, l) - t\text{-derivation of } X.
\]

By combining the remark 3.11 and proposition 3.12, we get the following theorem.

Theorem 3.13. Let \(X \) be an associative \(TM \)-algebra. For ant \(t \in X \), a self map \(d_t \) is a \(t \)-derivation on \(X \).

Definition 3.14. A self map \(d_t \) of a \(TM \)-algebra \(X \) is said to be \(t \)-regular if \(d_t(0) = 0 \).

Example 3.15. In example 3.10 \(d_t \) is a regular \(t \)-derivation on \(X \) when \(t = 0 \). However, \(t = 1 \) or \(t = 2 \) or \(t = 3 \), \(d_t \) is not a regular \(t \)-derivation of \(X \).

Proposition 3.16. For any self map \(d_t \) of a \(TM \)-algebra \(X \), the following holds:

1. If \(d_t \) is a \((l, r) \)-\(t \)-derivation of \(X \), \(d_t(x) = d_t(x) \land x \forall x \in X \).

2. If \(d_t \) is a \((r, l) \)-\(t \)-derivation of \(X \), \(d_t(x) = x \land d_t(x) \) for all \(x \in X \) if and only if \(d_t \) is \(t \)-regular.

Proof.

1. Let \(d_t \) be a \((l, r) \)-\(t \)-derivation of \(X \). Then we have

\[
\begin{align*}
 d_t(x) & = d_t(x * 0) \\
 & = (d_t(x) * 0) \land (x * d_t(0)) \\
 & = d_t(x) \land (x * d_t(0)) \\
 & = (x * d_t(0)) * ((x * d_t(0)) * d_t(x)) \\
 & = (x * d_t(0)) * ((x * d_t(x)) * d_t(0) \quad (\because (x * y) * z = x * (z * y)) \\
 & = x * (x * d_t(x)) \quad (\because (x * z) * (y * z) = x * y) \\
 & = d_t(x) \land x
\end{align*}
\]

\[
\therefore d_t \text{ is a } (l, r) - t\text{-derivation of } X.
\]

2. Let \(d_t \) be a \((r, l) \)-\(t \)-derivation of \(X \) and \(d_t(x) = x \land d_t(x) \quad \cdots \cdots (1) \).
Put $x = 0$ in (1), we have

\[
\begin{align*}
d_t(0) &= 0 \land d_t(0) \\
&= d_t(0) \ast (d_t(0) \ast 0) \\
&= d_t(0) \ast d_t(0) \\
&= 0
\end{align*}
\]

\[
\therefore \ d_t \text{ is } t-\text{regular.}
\]

Conversely, suppose that d_t is $t-$regular $(r, l) - t-$derivation of X. Then

\[
\begin{align*}
d_t(x) &= d_t(x \ast 0) \\
&= (x \ast d_t(0)) \land (d_t(x) \ast 0) \\
&= (x \ast 0) \land d_t(x) \quad (\because d_t(0) = 0) \\
&= x \land d_t(x)
\end{align*}
\]

Hence the proof.

Theorem 3.17. Let d_t be a $(l, r) - t-$derivation of a $TM-$algebra. Then the following hold.

1. $d_t(0) = d_t(x) \ast x \ \forall \ x \in X$.

2. d_t is one-one.

3. d_t is $t-$regular then it is the identity map.

4. If there is an element $x \in X$ such that $d_t(x) = x$, then d_t is the identity map.

5. If $x \leq y$ then $d_t(x) \leq d_t(y)$ for all $x, y \in X$.

Proof.

1. Let d_t be a $(l, r) - t-$derivation of a $TM-$algebra X.

Then we have $d_t(0) = d_t(x \ast x) = d_t(x) \ast x \quad (\because d_t \text{ is a } (l, r) - t-\text{derivation})$

2. Let $d_t(x) = d_t(y)$ for all $x, y \in X$.

Then $x \ast t = y \ast t$ and by applying the right cancellation law we have, $x = y$.
3. Let d_t be a t–regular and $x \in X$. Now,

$$x \ast x = 0 = d_t(0) = d_t(x \ast x) = d_t(x) \ast x$$

Hence by right cancellation law, $d_t(x) = x \forall x \in X$, showing that d_t is the identity map.

4. Let $d_t(x) = x$ for some $x \in X$.

$$0 = x \ast x = d_t(x) \ast x = d_t(x \ast x) = d_t(0).$$

showing that d_t is t–regular. Hence by (3) d_t is the identity map

5. Since $x \leq y$,

$$d_t(x) \ast d_t(y) = (x \ast t) \ast (y \ast t) = (x \ast y) = 0$$

thus proving $d_t(x) \leq d_t(y)$.

Theorem 3.18. Let X be a TM–algebra and d_t be a t–derivation on X. If $x \leq y$ and $d_t(x \ast y) = d_t(x) \ast d_t(y)$ for all $x, y \in X$. Then $d_t(x) = d_t(y)$.

Proof.

$$d_t(x) = d_t(x \ast 0)$$
$$= d_t(x \ast (x \ast y)) \quad (\because x \leq y)$$
$$= d_t(x) \ast d_t(x \ast y) \quad (\because d_t(x \ast y) = d_t(x) \ast d_t(y))$$
$$= d_t(x) \ast (d_t(x) \ast d_t(y))$$
$$= d_t(y) \quad (\because x \ast (x \ast y) = y)$$

Theorem 3.19. Let d_t be a t–regular $(r, l)$$t$–derivation of a TM–algebra X. Then the following hold.

1. $d_t(x) = x$.

2. $d_t(x) \ast y = x \ast d_t(y)$ for all $x, y \in X$.

3. $d_t(x \ast y) = d_t(x) \ast y = d_t(x) \ast d_t(y) = x \ast d_t(y)$.

4. $Ker(d_t) = \{x \in X : d_t(x) = 0\}$ is a sub algebra of X.

Proof.

1. Since d_t is t–regular (r, l)–t–derivation of X, for any $x \in X$, we have

$$d_t(x) = d_t(x \ast 0) = x \ast d_t(0) = x \ast 0 = x.$$
2. If d_t is t-regular $(r, l) - t$-derivation of X then by (1), $d_t(x) = x$ for all $x \in X$.
 Thus, $d_t(x) * y = x * y = x * d_t(y)$.

3. If d_t is t-regular $(r, l) - t$-derivation of X then by (1), $d_t(x) = x \forall x \in X \cdots \cdots (1)$.
 For $x, y \in X$, $d_t(x * y) = x * y = d_t(x) * d_t(y)$ \quad \text{(By (1))}
 If d_t is a $(r, l) - t$-derivation of X then $d_t(x * y) = x * d_t(y)$.
 $d_t(x * y) = x * y = d_t(x) * y$. \quad \text{($\therefore x = d_t(x)$)}
 Hence $d_t(x * y) = d_t(x) * y = x * d_t(y) = x * y$.

4. Since d_t is t-regular, $d_t(0) = 0$. Then $0 \in Ker(d_t)$ showing that $Ker(d_t)$ is a non-empty set.
 Let $x, y \in Ker(d_t)$, then $d_t(x) = 0, d_t(y) = 0$. Now

 $d_t(x * y) = x * y = d_t(x) * d_t(y) = 0 * 0 = 0$.

 Therefore $(x * y) \in Ker(d_t)$, proving that $Ker(d_t)$ is a sub-algebra of X.

Proposition 3.20. Let X be a TM-algebra. Then $Ker(d_t) = \{0\}$ if and only if d_t is t-regular.

Proof. Obviously when $Ker(d_t) = \{0\}$ $d_t(0) = 0$, showing that d_t is t-regular.
 On the other hand, if $x \in Ker(d_t)$, d_t is t-regular shows that,

 $0 = d_t(0) = d_t(x * x) = d_t(x) * x = 0 * x$.

 Thus, $x = 0$, showing that $Ker(d_t) = \{0\}$.

Definition 3.21. Let X be a TM-algebra and let d_t, d'_t be two self maps of X. Then we define $d_t \circ d'_t : X \rightarrow X$ by $(d_t \circ d'_t)(x) = d_t(d'_t(x))$ for all $x \in X$.

Example 3.22. Consider the TM-algebra given in example 3.2. The self-maps $d_t, d'_t : X \rightarrow X$ given by

 $d_t(0) = 1, d_t(1) = 0, d_t(2) = 3, d_t(3) = 2$
 $d'_t(0) = 2, d'_t(1) = 3, d'_t(2) = 0, d'_t(3) = 1$ are t-derivations on X.
 Now define a self map $(d_t \circ d'_t) : X \rightarrow X$ by

 $(d_t \circ d'_t)(0) = 3, (d_t \circ d'_t)(1) = 2, (d_t \circ d'_t)(2) = 1, (d_t \circ d'_t)(3) = 0$.
 Then it is easily checked that $(d_t \circ d'_t)(x) = d_t(d'_t(x))$ for all $x \in X$ is also a t-derivation of X.
Proposition 3.23. Let \(X \) be a \(TM \)-algebra and let \(d_t, d'_t \) be a \((l, r) - t\) -derivation of \(X \). Then \((d_t \circ d'_t) \) is also a \((l, r) - t\) -derivation of \(X \).

Proof. Let \(X \) be a \(TM \)-algebra and let \(d_t, d'_t \) be \((l, r) - t\) -derivations of \(X \). Then for all \(x, y \in X \). We have

\[
(d_t \circ d'_t)(x \ast y) = d_t(d'_t(x \ast y)) \\
= d_t(d'_t(x) \ast y) \quad (\because d'_t \text{ is a } (l, r) - t \text{-derivation of } X) \\
= (d_t(d'_t(x)) \ast y) \quad (\because d_t \text{ is a } (l, r) - t \text{-derivation of } X) \\
= (d_t \circ d'_t)(x) \ast y
\]

\(\therefore (d_t \circ d'_t) \) is a \((l, r) - t\) -derivation of \(X \).

Proposition 3.24. Let \(X \) be a \(TM \)-algebra and let \(d_t, d'_t \) be \((r, l) - t\) -derivations of \(X \). Then \((d_t \circ d'_t) \) is also a \((r, l) - t\) -derivation of \(X \).

Proof. Let \(X \) be a \(TM \)-algebra and let \(d_t, d'_t \) be \((r, l) - t\) -derivations of \(X \).

Then for all \(x, y \in X \). We have

\[
(d_t \circ d'_t)(x \ast y) = d_t(d'_t(x \ast y)) \\
= d_t(x \ast d'_t(y)) \quad (\because d'_t \text{ is a } (r, l) - t \text{-derivation of } X) \\
= x \ast d'_t(d_t(y)) \quad (\because d_t \text{ is a } (r, l) - t \text{-derivation of } X) \\
= x \ast (d_t \circ d'_t)(y)
\]

\(\therefore (d_t \circ d'_t) \) is a \((r, l) - t\) -derivation of \(X \).

Combining the above two propositions we get the following theorem.

Theorem 3.25. Let \(X \) be a \(TM \)-algebra and let \(d_t, d'_t \) be \(t \)-derivation of \(X \). Then \((d_t \circ d'_t) \) is also a \(t \)-derivation of \(X \).

Theorem 3.26. Let \(X \) be a \(TM \)-algebra. Let \(d_t \) be a \((r, l) - t\) -derivation of \(X \) and \(d'_t \) be a \((l, r) - t\) -derivation of \(X \). Then \(d_t \circ d'_t = d'_t \circ d_t \).

Proof. Let \(d'_t \) be a \((l, r) - t\) -derivation of \(X \). Then we have \(d'_t(x \ast y) = d'_t(x) \ast y \).

Now \((d_t \circ d'_t)(x \ast y) = d_t(d'_t(x \ast y)) = d_t(d'_t(x)) \ast y = d'_t(x) \ast d_t(y) \quad \cdots \cdots (1) \quad (\because d_t \text{ is a } (r, l) - t \text{-derivation of } X) \)

Again \((d_t \circ d'_t)(x \ast y) = d'_t(d_t(x \ast y)) \)
\[
\dot{d}_t(x \ast d_t(y)) \\
= \dot{d}_t(x \ast d_t(y)) \\
(: \cdot \dot{d}_t \text{ is a } (r, l) - t \text{- derivation of } X) \\
= \dot{d}_t(x) \ast d_t(y) \quad \cdots \cdots \quad (2) \\
(: \cdot \dot{d}_t \text{ is a } (l, r) - t \text{- derivation of } X)
\]

From (1) and (2), \((d_t \circ \dot{d}_t)(x \ast y) = (\dot{d}_t \circ d_t)(x \ast y)\).

This is true for all \(x, y \in X\). In particular this true for all \(x\) and \(y = 0\).

Put \(y = 0\), \((d_t \circ \dot{d}_t)(x \ast 0) = (\dot{d}_t \circ d_t)(x \ast 0)\)

\((d_t \circ \dot{d}_t)(x) = (\dot{d}_t \circ d_t)(x)\) for all \(x \in X\).

Hence \(d_t \circ \dot{d}_t = \dot{d}_t \circ d_t\).

The following theorem can be easily obtained by above theorem 3.26.

Theorem 3.27. Let \(X\) be a TM-algebra and let \(d_t, \dot{d}_t\) be two \(t\)-derivations of \(X\), then \(d_t \circ \dot{d}_t = \dot{d}_t \circ d_t\).

Definition 3.28. Let \(X\) be a TM-algebra and let \(d_t, \dot{d}_t\) be two self maps of \(X\). Then we define \(d_t \ast \dot{d}_t : X \rightarrow X\) defined by \((d_t \ast \dot{d}_t)(x) = d_t(x) \ast \dot{d}_t(x)\) for all \(x \in X\).

Example 3.29. Consider the TM-algebra \((X, \ast, 0)\) given in 3.2. Define \(d_t : X \rightarrow X\) by

\[d_t(0) = 1, \; d_t(1) = 0, \; d_t(2) = 3, \; d_t(3) = 2\] be a \(t\)-derivation of \(X\).

Define \(\dot{d}_t : X \rightarrow X\) by \(\dot{d}_t(0) = 2, \; \dot{d}_t(1) = 3, \; \dot{d}_t(2) = 0, \; \dot{d}_t(3) = 1\) be a \(t\)-derivation of \(X\).

Now \((d_t \ast \dot{d}_t)(0) = 3 = d_t(0) \ast \dot{d}_t(0)\).

\((d_t \ast \dot{d}_t)(1) = 3 = d_t(1) \ast \dot{d}_t(1)\) \((d_t \ast \dot{d}_t)(2) = 3 = d_t(2) \ast \dot{d}_t(2)\) \((d_t \ast \dot{d}_t)(3) = 3 = d_t(3) \ast \dot{d}_t(3)\).

Theorem 3.30. Let \(X\) be a TM-algebra and let \(d_t, \dot{d}_t\) be two \(t\)-derivations of \(X\). Then \(d_t \ast \dot{d}_t = \dot{d}_t \ast d_t\).

Proof. Let \(X\) be a TM-algebra and let \(d_t, \dot{d}_t\) be \(t\)-derivation of \(X\). Then we have

\[(d_t \circ \dot{d}_t)(x \ast y) = d_t(\dot{d}_t(x \ast y))
= d_t(d_t(x) \ast y)
= d_t(d_t(x) \ast y) \quad (: \cdot \dot{d}_t \text{ is a } (l, r) - t \text{- derivation of } X) \\
= \dot{d}_t(x) \ast d_t(y) \quad \cdots \cdots \quad (1) \\
(: \cdot \dot{d}_t \text{ is a } (r, l) - t \text{- derivation of } X)\]

Again \((d_t \circ \dot{d}_t)(x \ast y) = d_t(\dot{d}_t(x \ast y))\)
Derivations on TM-Algebras

Now, from (1) and (2), \(d_t(y) \) is also a \((r, l) - t \)-derivation of \(X \).

From (1) and (2), \(d_t(x) * d_t(y) = d_t(x) * d_t(y) \) \(\cdots \cdots \cdots (2) \)

Hence \(d_t * d_t = d_t * d_t \).

Definition 3.31. Let \(L_t Der(X) \) denote the set of all \((l, r) - t \)-derivations of \(X \). Define the binary operation \(\wedge \) on \(L_t Der(X) \) as follows: For \(d_t, d_t' \in L_t Der(X) \), define \((d_t \wedge d_t')(x) = d_t(x) \wedge d_t'(x) \) \(\forall x \in X \).

Lemma 3.32. If \(d_t \) and \(d_t' \) are \((l, r) - t \)-derivations on \(X \). Then \((d_t \wedge d_t') \) is also a \((l, r) - t \)-derivation on \(X \).

Proof. Let \(d_t, d_t' \) be \((l, r) - t \)-derivation on \(X \). Then we have
\[
(d_t \wedge d_t')(x \ast y) = d_t(x \ast y) \wedge d_t'(x \ast y) \quad \text{(By definition)}
\]
\[
= (d_t(x) \ast y) \wedge (d_t'(x) \ast y) \quad \text{\(\therefore \) \(d_t, d_t' \) are \((l, r) - t \)-derivations}
\]
\[
= (d_t'(x) \ast y) \ast ((d_t(x) \ast y) \ast (d_t(x) \ast y))
\]
\[
= d_t(x) \ast y \quad \cdots \cdots \cdots (1).
\]

Again,
\[
(d_t \wedge d_t')(x \ast y) = (d_t(x) \wedge d_t'(x)) \ast y
\]
\[
= (d_t(x) \ast (d_t'(x) \ast d_t(x))) \ast y
\]
\[
= d_t(x) \ast y \quad \cdots \cdots \cdots (2).
\]

From (1) and (2), \((d_t \wedge d_t')(x \ast y) = (d_t \wedge d_t')(x \ast y) \). Hence \((d_t \wedge d_t') \) is a \((l, r) - t \)-derivation of \(X \).

Lemma 3.33. The binary composition \(\wedge \) defined on \(L_t Der(X) \) is associative.

Proof. Let \(X \) be a TM-algebra. Let \(d_t, d_t', d_t'' \) be \((l, r) - t \)-derivations on \(X \). Now,
\[
((d_t \wedge d_t') \wedge d_t'')(x \ast y) = (d_t \wedge d_t')(x \ast y) \wedge d_t''(x \ast y)
\]
\[
= (d_t(x) \ast y) \wedge (d_t'(x) \ast y) \quad \text{(by lemma 3.32)}
\]
Then it is a semi-group under the binary operation \land. K. Iseki, An BCI-algebras, Math. Seminar Notes.

From (1) and (2), (\(d_t(x) \ast y \ast ((d_t(x) \ast y) \ast (d_t(x) \ast y))\))
\[= d_t(x) \ast y \quad \text{\cdots \cdots (1)} \quad (\because y \ast (y \ast x) = x)\]

Again
\[d_t(x) \ast y \ast ((d_t(x) \ast y) \ast (d_t(x) \ast y))\]
\[= (d_t(x) \ast y) \ast (d_t(x) \ast y) \quad (\text{By lemma 3.32})\]
\[= (d_t(x) \ast y) \ast (d_t(x) \ast y)\]
\[\because d_t \text{ is a } (l, r) - t - \text{derivation of } X\]
\[= (d_t(x) \ast y) \ast (d_t(x) \ast y)\]
\[= d_t(x) \ast y \quad \text{\cdots \cdots (2)}\]

From (1) and (2), (\((d_t \land d_t')(x \ast y) = (d_t \land d_t')(x \ast y)\))

Put $y = 0$, we get \((d_t \land (d_t \land d_t')(x) = (d_t \land (d_t \land d_t'))(x)\) for all $x \in X$.

Hence \((d_t \land d_t) \land d_t' = d_t \land (d_t \land d_t')\).

This prove that the binary operation \land is associative.

Combining the above two lemmas we get the following theorem.

Theorem 3.34. $L_tDer(X)$ is a semi-group under the binary operation \land defined by \((d_t \land d_t')(x) = d_t(x) \land d_t'(x)\) for all \(x \in X\), and \(d_t, d_t' \in L_tDer(X)\).

Definition 3.35. Let $R_tDer(X)$ denote the set of all \((r, l) - t - \text{derivations}\) on X. Define the binary operation \land on $R_tDer(X)$ as follows: For \(d_t, d_t' \in R_tDer(X)\). Define \((d_t \land d_t')(x) = d_t(x) \land d_t'(x)\).

Analogously we prove the following theorem.

Theorem 3.36. $R_tDer(X)$ is a semi-group under the binary operation \land defined by \((d_t \land d_t')(x) = d_t(x) \land d_t'(x)\) for all $x \in X$ and \(d_t, d_t' \in R_tDer(X)\).

Combining the above two theorems we get the following theorem

Theorem 3.37. If $tDer(X)$ denotes the set of all \(t - \text{derivations}\) on X then it is a semi-group under the binary operation \land defined by \((d_t \land d_t')(x) = d_t(x) \land d_t'(x)\) for all $x \in X$ and \(d_t, d_t' \in tDer(X)\),

References

