NOVEL SIGN OF SUPER EDGE-MAGIC GRAPH

A. Vijayabarathi¹ §, G.S.G.N. Anjaneyulu²

¹,²Applied Algebra Division
School of Advanced Sciences
VIT University
Vellore-14, Tamilnadu, INDIA

Abstract: In this paper, we introduce a new concept of super edge-magic sequence (SEMS) of a super edge-magic graph (SEMG) with p vertices and q edges. The super edge-magic sequence of natural numbers is denoted by < xᵢ >, 1 ≤ i ≤ q. This sequence need not to be monotonic. In this track, we also drive some families of super edge-magic graphs from fabrication of new super edge-magic sequences by considering additional parameter. We complete this paper by discussing the special case like monotonic sequences related to the super edge-magic sequence.

AMS Subject Classification: 05C78,05C99
Key Words: edge-magic graph, super edge-magic graph, super edge-magic sequence

1. Introduction

1.1. Background of Edge-Magic and Super Edge-Magic Graphs

Kotzig and Rosa introduced the concepts of magic valuation [11]. Ringel and Llado [15] called this type of valuation as edge-magic labeling. Enomoto et. al.[4] restricted the notion of edge-magic labeling of a graph to obtain the definition of super edge-magic labeling. A (p,q) graph G is called edge-magic if there exists a bijective function f : V(G) ∪ E(G) → {1, 2, 3, . . . , p + q} such
that $f(u) + f(v) + f(uv) = k$ is a magic constant for any edge $uv \in E(G)$. Moreover, G is said to be super edge-magic if $f(V(G)) \rightarrow \{1, 2, 3, \ldots, p\}$. The following Lemma from [13] provides a necessary and sufficient condition for a graph to be super edge-magic.

Lemma 1.1. A graph G with p vertices and q edges is super edge-magic if and only if there exists a bijective function $f : V(G) \rightarrow \{1, 2, 3, \ldots, p\}$ such that the set $S = \{f(x) + f(y) / xy \in E(G)\}$ consists of q consecutive integers. In such a case, f extends to a super edge-magic total labeling of G with the magic constant $c = p + q + \min(S)$.

Lemma 1.2. If a graph G with p vertices and q edges is super edge-magic then $q \leq 2p - 3$.

Lemma 1.3. Let G be a triangle free super edge-magic graph with $p \ (\geq 4)$ vertices and q edges. Then, $q \leq 2p - 5$.

1.2. Road Map of the Paper

The rest of the paper is organized as follows: In Section 2, we introduce the concept of super edge-magic sequence and construction of SEMG from SEMS. Also we give the limitations and upshots of super edge-magic sequence. Section 3, includes fabrication of new super edge-magic sequences and we drive some families of super edge-magic graphs. The last section covers a special case of sequence like monotonic sequence with their behavior in SEMS.

2. Proposed Work

2.1. Definition and Construction

Now we define the concept of super edge-magic sequence and transmit it to the graph. We describe super edge-magic sequence analogously for graceful sequence [1], [2] and [3].

Definition 2.1. (Super Edge-Magic Sequence) Let G be a super edge magic graph with p vertices and q edges. Here we introduce a new term i.e. a constant of super edge-magic sequence and is denoted by α^*. A Sequence $< x_i >$ is said to be super edge- magic sequence if

$$\max_{1 \leq i \leq q} \{2x_i + i\} < \alpha^* + q \leq p + \min_{1 \leq i \leq q} \{x_i + i\} \ldots (2.1.a)$$
Where \(x_i \) is always the lower end vertex of the edge label \(p + i \), \(1 \leq i \leq q \) i.e., \(x_i = \min \{ f(x), f(y) / xy \in E(G) \} \) and \(\alpha^* = \min(S) \), Where \(S = \{ f(x) + f(y) / xy \in E(G) \} \). We illustrate a super edge-magic sequence of Figure 1. SEMS of a

![Figure 1](image1)

![Figure 2](image2)

SEM Graph: Suppose \((4,4,2,1,2,3,1,3,1)\) is a given sequence. For \(1 \leq i \leq q\), \(\max \{2x_i + i\} = 14, \min \{x_i + i\} = 5, \alpha^* = 6, p = 10, q = 9 \). Then above data satisfies the condition (2.1.a).

Note 2.1. In this entire paper sequence means super edge-magic sequence.

2.2. Edifice of a Super Edge-Magic Graph from the Sequence

Let \((x_1, x_2, x_3, \ldots, x_q)\) be the sequence having 'q' terms. Compute \(\alpha^* \) and \(p \) using the condition (2.1.a) as follows:

\[
\text{Let} \quad m = \max_{1 \leq i \leq q} \{2x_i + i\} \quad \text{and} \quad n = \min_{1 \leq i \leq q} \{x_i + i\}
\]

Then by (2.1.a), \(m < \alpha^* + q \leq p + n \). In this construction, \(\alpha^* \) is independent for \(\alpha^* \geq m - q + 1 \). Based on particular \(\alpha^* \), and by (2.1.a) choose \(p \geq \alpha^* + q - n \). For every \(\alpha^* \), there exist many \(p \) values such that all they must give super edge-magic graphs. Here we note that each \(p \) in this domain, the super edge-magic graph is unique. Identify the edges of super edge-magic graph corresponding a particular \(\alpha^* \) and 'p' by the following way:

1.
The super edge-magic graph can be drawn by identifying all the edges like above.

Concrete Example. Suppose the given sequence is \((3,3,3,1,2,2,2,1)\), \(q=8\), \(m = 11\) and \(n = 4\). On simplification of (2.1.a), we obtain \(3 < \alpha^* \leq p - 4\). The possibilities of \(\alpha^*\) and \(p\) is respectively: \(\alpha^* = \{4,5,6,\ldots\}\) and \(p = \{8,9,10,\ldots\}\). In this domain of \(\alpha^*\) and \(p\), given sequence is super edge-magic sequence. For \(\alpha^* = 4, p= \{8,9,10,\ldots\}\). If \(\alpha^* = 4\), and we select appropriate \(p = 8\). We identify the edges by the following way:

Then the super edge-magic graph is shown in Figure 2

2.3. Limitations and Upshots of Super Edge-Magic Sequence

Lemma 2.3.1. Let \((x_1, x_2, \ldots, x_q)\) be any super edge-magic sequence. \(x_i\) denotes lower end vertex of the edge label \(p + i, 1 \leq i \leq q\). Then lower end vertex is always strictly less than the upper end vertex, i.e., \(x_i < \alpha^* + q - i - x_i\) and upper end vertex is less than or equal to \(p\).

Proof. Let \((x_1, x_2, \ldots, x_q)\) be any super edge-magic sequence. Then by definition (2.1), this sequence satisfies the condition (2.1.a).

From LHS of (2.1.a): \(x_i < \alpha^* + q - i - x_i\) for all \(i, 1 \leq i \leq q\) (2.3.a)

From RHS of (2.1.a): \(\alpha^* + q - i - x_i \leq p\) for all \(i, 1 \leq i \leq q\) (2.3.b)

Also from (2.3.a) and (2.3.b), \(x_i < \alpha^* + q - i - x_i \leq p\) This completes the proof.

Proposition 2.3.1. Let \(< x_i >, 1 \leq i \leq q\) be any super edge-magic sequence. The lower end vertex is at most \(p-1\). i.e., \(x_i \leq p - 1\).

Theorem 2.3.1. A graph is a super edge-magic graph if and only if \(G\) has super edge-magic sequence.

Proof. Necessary Part. Let \((x_1, x_2, \ldots, x_q)\) be super edge-magic sequence. Then by definition (2.1), it has one super edge-magic graph.
Sufficient Part. Let us assume that G is super edge-magic. Here $\alpha^* = \min\{f(u) + f(v)/uv \in E(G)\}$ and $S = \{\alpha^*, \alpha^* + 1, \alpha^* + 2, \ldots, \alpha^* + q - 1\}$ has $"q"$ consecutive integers. i.e., $S = \{\alpha^* + q - i/1 \leq i \leq q\}$ For each edge $e=uv \in E(G)$, $x_i = \min\{f(u), f(v)/f(u) + f(v) = \alpha^* + q - i/1 \leq i \leq q\}$ The other end is $\alpha^* + q - i - x_i, \forall i, 1 \leq i \leq q$. By the second part of the lemma (2.3.1),
\[
\alpha^* + q \leq p + \min_{1 \leq i \leq q} \{x_i + i\} \ldots (2.3.c)
\]
And the first part of the lemma (2.3.1),
\[
\max_{1 \leq i \leq q} \{2x_i + i\} < \alpha^* + q \ldots (2.3.d)
\]
From (2.3.c) and (2.3.d), (x_1, x_2, \ldots, x_q) is super edge-magic sequence. This completes the proof.

3. Fabrication of New Super Edge-magic Sequences

In this section, we fabricate new SEMS of SEMG by means of extension. We will do this construction as explained analogously in [1], [2].

Theorem 3.1. If (x_1, x_2, \ldots, x_q) represents a super edge-magic sequence of a graph G on "q" edges with
\[
\alpha^* (< x_i >) = \max_{1 \leq i \leq q} \{2x_i + i\} + 1 - q \ldots (3.a)
\]
\[
p(< x_i >) = \max_{1 \leq i \leq q} \{2x_i + i\} - \min_{1 \leq i \leq q} \{x_i + i\} + 1 \ldots (3.b)
\]
Then the sequence $(x^* + 1 - x_1, x^* + 1 - x_2, \ldots, x^* + 1 - x_{q-1}, x^* + 1 - x_q, x_1, x_2, \ldots, x_q)$ represents super edge-magic sequence on $2q$ edges with same α^*, for $x^* = \max\{x_i/1 \leq i \leq q\}$.

\[
\begin{array}{cccccccc}
3 & 3 & 3 & 1 & 2 & 2 & 2 & 1 \\
\downarrow & & & & & & & \\
8 & 7 & 6 & 7 & 5 & 4 & 3 & 3 \\
\end{array}
\]
Proof. Let \(y_i = x^* + 1 - x_i, \ 1 \leq i \leq q \) \(y_q + i = x_i, \ 1 \leq i \leq q \) Then the sequence becomes: \((y_1, y_2, y_3 \ldots y_q, y_{q+1}, \ldots, y_{2q})\)

\[
\max_{1 \leq i \leq q} \{2y_i + i\} \leq 2x^* + q (3.c)
\]

Suppose \(x^* \) is occurring in the position of the least label \('r' \) in the sequence \(< x_i >\)

\[
2x^* + q < 2x^* + q + r \leq \max_{1 \leq i \leq q} \{2y_{q+i} + q + i\} = \max_{1 \leq i \leq q} \{2x_i + i\} + q = \alpha*(< x_i >) + 2q - 1by(3.a)
\]

\[
2x^* + q < \alpha*(< x_i >) + 2q - 1...... (3.d)
\]

\[
\max_{q+1 \leq i \leq 2q} \{2y_i + i\} = \max_{1 \leq i \leq q} \{2x_i + i\} + q
\]

\[
\max_{q+1 \leq i \leq 2q} \{2y_i + i\} = \alpha*(< x_i >) + 2q - 1...... (3.e)
\]

using (3.c) and (3.e)

\[
\max_{1 \leq i \leq 2q} \{2y_i + i\} = \alpha*(< x_i >) + 2q - 1...... (3.f)
\]

By applying (3.a), \(\alpha*(< y_i >) = \max_{1 \leq i \leq 2q} \{2y_i + i\} + 1 - 2q = \alpha*(< x_i >) (by 3.f) \)

\(\alpha*(< y_i >) = \alpha*(< x_i >). \)

This completes the proof.

Corollary 3.1. If \((x^* + 1 - x_1, x^* + 1 - x_2, \ldots, x^* + 1 - x_{q-1}, x^* + 1 - x_q, x_1, x_2, \ldots, x_q)\) represents super edge-magic sequence on \(2q\) edges satisfying the conditions in theorem 3.1 then the number of vertices is given by

\[
\alpha*(< x_i >) + 2q - \min_{1 \leq i \leq 2q} \{y_i + i\}
\]

Proof. Using the Theorem 3.1:

\[
\min_{1 \leq i \leq 2q} \{y_i + i\} = \min_{1 \leq i \leq q} \{y_i + i\} = \min_{1 \leq i \leq q} \{(x^* + 1 - x_i) + i\}
\]
(by 3.b) and we have

\[p(<y_i>) = \alpha * (<x_i>) + 2q - \min_{1 \leq i \leq q} \{x^* - x_i + i + 1\} \]

\[p(<y_i>) = \alpha * (<x_i>) + 2q - \min_{1 \leq i \leq 2q} \{y_i + i\} \]

This completes the proof.

Let us illustrate the theorem and corollary of 3.1, by the following:

Suppose \(<x_i> = (3, 2, 2, 1, 1)\), by the theorem 3.1, \(\alpha^* = 3\), \(p(G_1) = 4, x^* = 3\), \(<y_i> = (1, 2, 2, 3, 3, 3, 2, 2, 1, 1)\), and by corollary 3.1, \(p(G_2) = 11\). Then the graph as shown in Figure 3:

![Figure 3](image1)

![Figure 4](image2)

Theorem 3.2. If \((x_1, x_2, \ldots, x_q)\) represents a super edge-magic sequence of a graph \(G\) on \(q\) edges with

\[\alpha * (<x_i>) = \max_{1 \leq i \leq q} \{2x_i + i\} + 1 - q \ldots \ldots \ (3.g) \]

\[p(<x_i>) = \max_{1 \leq i \leq q} \{2x_i + i\} - \min_{1 \leq i \leq q} \{x_i + i\} + 1 \ldots \ldots \ (3.h) \]
Then \((x_1 + 1 - x_q, x_1 + 1 - x_{q-1}, \ldots, x^* + 1 - x_2, x^* + 1 - x_1, x_1, x_2, \ldots, x_q)\) represents super edge-magic sequence on 2\(q\) edges with same \(\alpha^*\), for \(x^* = \max\{x_i/1 \leq i \leq q\}\).

Proof. Let \(y_i = x^* + 1 - x_{q} - i + 1, 1 \leq i \leq q\) \(y_{q+i} = x_i, 1 \leq i \leq q\) The given sequence becomes: \((y_1, y_2, \ldots, y_q, y_{q+1}, \ldots, y_{2q})\)

\[
\max_{1 \leq i \leq q} \{2y_i + i\} = \max_{1 \leq i \leq q} \{2(x^* + 1 - x_{q-i+1} + i)\}
\]

\[
= 2x^* + 2 - \min_{1 \leq i \leq q} \{2x_{q-i+1} + i\}
\]

\[
\max_{1 \leq i \leq q} \{2y_i + i\} < 2x^* + q \ldots (3.i)
\]

Using theorem 3.1, \(2x^* + q < \alpha^* (\langle x_i \rangle) + 2q - 1\) and By (3.e)

\[
\max_{q+1 \leq i \leq 2q} \{2y_i + i\} \leq \alpha^* (\langle x_i \rangle) + 2q - 1\ldots (3.j)
\]

By (3.i) and (3.j),

\[
\max_{1 \leq i \leq 2q} \{2y_i + i\} = \alpha^* (\langle y_i \rangle) + 1 - 2q
\]

By applying (3.g) \(\alpha^* (\langle y_i \rangle) = \alpha^* (\langle x_i \rangle)\)

This completes the proof.

Corollary 3.2. If \((x^* + 1 - x_q, x^* + 1 - x_{q-1}, \ldots, x^* + 1 - x_2, x^* + 1 - x_1, x_1, x_2, \ldots, x_q)\) represents super edge-magic sequence on 2\(q\) edges satisfying the conditions in theorem 3.2 then the number of vertices is given by

\[
\alpha^* (\langle x_i \rangle) + 2q - \min_{1 \leq i \leq 2q} \{y_i + i\}
\]

Proof. The sequence \(\langle y_i \rangle\) and other details are followed by theorem 3.2.

\[
\min_{1 \leq i \leq 2q} \{y_i + i\} = \min_{1 \leq i \leq q} \{(x^* + 1 - x_{q-i+1})\}
\]

\[
= (x^* + 1) - \max_{1 \leq i \leq q} \{(x_{q-i+1})\}
\]

\[
p(\langle y_i \rangle) = \max_{1 \leq i \leq 2q} \{2y_i + i\} - \min_{1 \leq i \leq 2q} \{y_i + i\} + 1
\]
By using (3.h)

\[p(<yi>) = \alpha*(<xi>) + 2q - \min_{1 \leq i \leq 2q} \{y_i + i\} \]

This completes the proof.

\[\text{Concrete Example for the theorem and corollary of 3.2:} \]
Suppose \(<x_i> = (3,2,2,1,1)\), by using theorem 3.2, \(\alpha* = 3\), \(p(G_1) = 4\), \(x^* = 3\), \(<y_i> = (3,3,2,2,1,3,2,2,1,1)\), and by corollary 3.2, \(p(G_2) = 9\). Then the graph as shown in Figure 4.

\textbf{Theorem 3.3.} If \((x_1, x_2, \ldots, x_q)\) represents a super edge-magic sequence with

\[\alpha*(<x_i>) = \max_{1 \leq i \leq q} \{2x_i + i\} + 1 - q \]

and

\[p(<x_i>) = \max_{1 \leq i \leq q} \{2x_i + i\} - \min_{1 \leq i \leq q} \{x_i + i\} + 1 \]

Then \((\alpha* + q - 1 - x_1, \alpha* + q - 2 - x_2, \ldots, \alpha* - x_q, \lambda, x_1, x_2, \ldots, x_q)\) represents a super edge-magic sequence on \(2q+1\) edges with same \(\alpha*\), choose \(\lambda\) such that \(1 \leq \lambda < q\).

\textbf{Proof.} This is an immediate consequence of definition and by applying theorem 3.1.

\textbf{Remark 3.1.} Based on the parameter \(<x_i>, q, \alpha*\), At least one \(\lambda\) such that \(1 \leq \lambda < q\) would give SEMG.

\[\text{Let us illustrate the theorem and corollary of 3.3 as follows:} \quad <x_i> = (2,1,2,2,1), \quad \alpha* = 4, \quad p(G_1) = 6, \quad <y_i> = (6,6,4,3,3,2,1,2,2,1), \lambda = 3, \quad p(G_2) = 8. \]

Figure 5 shows the graph.
Remark 3.2. Theorems from 3.1 to 3.3 have the same property that the sequence \(< x_i > \) and \(< y_i > \) have same \(\alpha^* \). Each sequence gives one super edge-magic graph say \(G_1, G_2 \) respectively then the graph \(G_2 \) contains \(G_1 \) always. \(G_1 \) indicated by block color and \(G_2 \) indicated by pink color.

Theorem 3.4. If \((x_1, x_2, \ldots, x_q) \) represents a super edge-magic sequence of a graph \(G \) on \("q" \) edges with

\[
\alpha^*(<x_i>) = \max_{1 \leq i \leq q} \{2x_i + i\} + 1 - q
\]

\[
p(<x_i>) = \max_{1 \leq i \leq q} \{2x_i + i\} - \min_{1 \leq i \leq q} \{x_i + i\} + 1
\]

Then \((2x_1 + 1, 2x_1, 2x_2 + 1, 2x_2, ..., 2x_q + 1, 2x_q) \) represents super edge-magic sequence of a graph \(H \) such that \(\alpha^*(H) = 2\alpha^*(G) \) and \(p(H) = 2p(G) \).

Proof. This is an immediate consequence on modification of \(< x_i > \) by definition.

Remark 3.3. \(\alpha^* \) of \(H \) is twice number of \(\alpha^* \) of \(G \), so that the structure of the graph \(G \) is embedded in \(H \) and also the labeling of \(G \) is exactly doubled.

Let us illustrate the theorem 3.4 by the following: In the succeeding figures the color green indicates the graph \(G \) and blue indicates \(H \).

- If \(G \) has one connected component then the corresponding \(H \) as follows: \(< x_i > = (4,4,2,1,2,3,1,3,1) \), \(\alpha^*(G) = 6 \), \(p(G) = 10 \), \(q(G) = 9 \). The sequence for \(H = (9,8,9,8,5,4,3,2,5,4,7,6,3,2,7,6,3,2) \), \(p(H) = 20 \), \(q(H) = 18 \), \(\alpha^*(H) = 12 \). Then the graph as shown in Figure 6

![Figure 6](image-url)
• If G has more than one connected components the corresponding H as follows: \(< x_i > = (4,5,6,6,6,6) \alpha^*(G)=13, p(G)=14, q(G)=6. The sequence for H=(9,8,11,10,13,12,13,12,13,12,13,12,13,12), \alpha^*(H)=26, p(H)=28, q(H)=12. Then the graph as shown in Figure 7

Proposition 3.1. If any super edge-magic sequence does not contain the element '1', then \((m-1)\) number of deficiency can be reduced by subtracting \((m-1)\) in each element of that sequence, where \(m\) is minimum element of the given super edge-magic sequence.

Proof. This is an immediate consequence of theorem 3.4.

4. Monotonic Sequences and their Behavior in Super Edge-Magic Graph

Proposition 4.1. If the sequence \(< x_i >, 1 \leq i \leq q\) defines a super edge-magic graph with \(x_1 \geq x_2 \geq x_3 \geq \cdots \geq x_q (= 1)\) then the feasible range of \(\alpha^*\) is \(x_q + 2 \leq \alpha^* \leq x_1 + 2\).

The range of \(\alpha^*\) is \((x_q + 2, x_1 + 2)\) but all \(\alpha^*\) need not give super edge-magic graph. To find \(\alpha^*\) which will give super edge-magic graph from the following.

Proposition 4.2. Let \(< x_i >, 1 \leq i \leq q\) be super edge-magic sequence such that \(x_1 \geq x_2 \geq x_3 \geq \cdots \geq x_q\) with \(x_q = 1\),

\[
\alpha = \max_{1 \leq i \leq q} \{2x_i + i\} and \beta = \min_{1 \leq i \leq q} \{x_i + i\}
\]

Then the number of super edge-magic graph is \((q + 1) - (\alpha - \beta)\) which is denoted by 'r'. Moreover, the value of \(\alpha^*\) is \(\alpha - q + j, 1 \leq j \leq r\) and the corresponding value of \(p\) is at least \(\alpha^* - \beta + q\).

Definition 4.1. Let \(< x_i >, 1 \leq i \leq q\) be super edge-magic sequence such that \(x_1 \leq x_2 \leq x_3 \leq \cdots \leq x_q\) then number of digits appeared in the sequence \(< x_i >, 1 \leq i \leq q\) is said to be "order of these sequence" and denoted by 'n'.

Proposition 4.3. Let \(< x_i >, 1 \leq i \leq q\) be super edge-magic sequence such that \(x_1 \leq x_2 \leq x_3 \leq \cdots \leq x_q\) with \(x_1 = 1\). Then \(\alpha^* = 2x_q + 1, p=2x_q + q - 1\) must be super edge-magic graph with deficiency[13] is \(n-1\).

5. Conclusion

The relevance of this paper is two fold. First, we introduced definition of SEMS and construction method for SEMG from SEMS. In a consequent step,
the limitations and upshots of SEMS were also discussed. Second, Fabrication of New SEMS and behavior of monotonic sequences of super edge-magic graph were discussed.

References

