THE MINIMUM DOMINATING ENERGY OF A GRAPH

M.R. Rajesh Kanna1,3, B.N. Dharmendra2, G. Sridhara3

1,2,3Post Graduate Department of Mathematics
Maharani’s Science College for Women
J.L.B. Road, Mysore, 570 005, INDIA

3Research Scholar
Research and Development Centre
Bharathiar University
Coimbatore, 641 046, INDIA

Abstract: Recently Professor Chandrashekar Adiga et al [3] defined the minimum covering energy, \(E_C(G) \) of a graph which depends on its particular minimum cover \(C \). Motivated by this, we introduced minimum dominating energy of a graph \(E_D(G) \) and computed minimum dominating energies of a star graph, complete graph, crown graph and cocktail graphs. Upper and lower bounds for \(E_D(G) \) are established.

AMS Subject Classification: 05C50, 05C69
Key Words: minimum dominating set, minimum dominating matrix, minimum dominating eigenvalues, minimum dominating energy of a graph

1. Introduction

The concept of energy of a graph was introduced by I. Gutman [7] in the year 1978. Let \(G \) be a graph with \(n \) vertices and \(m \) edges and let \(A = (a_{ij}) \) be the adjacency matrix of the graph. The eigenvalues \(\lambda_1, \lambda_2, \cdots, \lambda_n \) of \(A \), assumed in non increasing order, are the eigenvalues of the graph \(G \). As \(A \) is real symmetric, the eigenvalues of \(G \) are real with sum equal to zero. The energy \(E(G) \) of \(G \) is...
defined to be the sum of the absolute values of the eigenvalues of G. i.e., \(E(G) = \sum_{i=1}^{n} |\lambda_i| \).

For details on the mathematical aspects of the theory of graph energy see the reviews [8], papers [4, 5, 9] and the references cited there in. The basic properties including various upper and lower bounds for energy of a graph have been established in [11, 12], and it has found remarkable chemical applications in the molecular orbital theory of conjugated molecules [6, 10].

2. The Minimum Dominating Energy

Let \(G \) be a simple graph of order \(n \) with vertex set \(V = \{v_1, v_2, ..., v_n\} \) and edge set \(E \). A subset \(D \) of \(V \) is called a dominating set of \(G \) if every vertex of \(V-D \) is adjacent to some vertex in \(D \). Any dominating set with minimum cardinality is called a minimum dominating set. Let \(D \) be a minimum dominating set of a graph \(G \). The minimum dominating matrix of \(G \) is the \(n \times n \) matrix defined by \(A_D(G) := (a_{ij}) \), where

\[
 a_{ij} = \begin{cases}
 1 & \text{if } v_i v_j \in E, \\
 1 & \text{if } i = j \text{ and } v_i \in D, \\
 0 & \text{otherwise}.
\end{cases}
\]

The characteristic polynomial of \(A_D(G) \) is denoted by \(f_n(G, \lambda) = \det(\lambda I - A_D(G)) \). The minimum dominating eigenvalues of the graph \(G \) are the eigenvalues of \(A_D(G) \). Since \(A_D(G) \) is real and symmetric, its eigenvalues are real numbers and we label them in non-increasing order \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \). The minimum dominating energy of \(G \) is defined as

\[
 E_D(G) := \sum_{i=1}^{n} |\lambda_i|.
\]

Note that the trace of \(A_D(G) = \text{Domination Number} = k \).

Example 1. The possible minimum dominating sets for the following graph \(G \) are:

i) \(D_1 = \{v_1, v_5\} \);

ii) \(D_2 = \{v_2, v_5\} \)

iii) \(D_3 = \{v_2, v_6\} \).
Minimum dominating eigen values are \(\lambda_1 \approx -1.6473, \lambda_2 \approx -1.1263, \lambda_3 \approx 0, \lambda_4 \approx 0.2546, \lambda_5 \approx 1.3261, \lambda_6 \approx 3.1929. \)

Minimum dominating energy, \(E_{D_1}(G) \approx 7.5471. \)

Minimum dominating eigen values are \(\lambda_1 \approx -1.4495, \lambda_2 \approx -1, \lambda_3 \approx 0, \lambda_4 \approx 0, \lambda_5 \approx 1, \lambda_6 \approx 3.4495. \)

Minimum domination energy, \(E_{D_2}(G) \approx 6.8990. \)

Minimum dominating energy depends on the dominating set.

Definition 3.1. The Cocktail party graph is denoted by \(K_{n \times 2}, \) is a graph having the vertex set \(V = \bigcup_{i=1}^{n} \{u_i, v_i\} \) and the edge set \(E = \{u_iu_j, v_iv_j : i \neq j, 1 \leq i, j \leq n\}. \)
Theorem 3.1. The minimum dominating energy of Cocktail party graph $K_{n \times 2}$ is $(2n - 3) + \sqrt{4n^2 - 4n - 9}$.

Proof. Let $K_{n \times 2}$ be the Cocktail party graph with vertex set $V = \bigcup_{i=1}^{n}\{u_i, v_i\}$. The minimum dominating set is $D = \{u_1, v_1\}$. Then

$$A_D(K_{n \times 2}) = \begin{pmatrix}
1 & 0 & 1 & 1 & \ldots & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & \ldots & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & \ldots & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & \ldots & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & \ldots & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & \ldots & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & \ldots & 1 & 1 & 0 & 0
\end{pmatrix}.$$

Characteristic polynomial is

$$\lambda^n - 1 \lambda^{-1} - 1 - 1 - 1 \ldots - 1 - 1 - 1 - 1 - 1.$$

Minimum dominating eigen values are:

$$\lambda = 0 \ [\text{one time}],$$

$$\lambda = 1 \ [\text{one time}],$$

$$\lambda = -2 \ [\text{n-2 times}], \ \lambda = \frac{(2n - 3) \pm \sqrt{4n^2 - 4n + 9}}{2} \ [\text{one time each}].$$

Minimum dominating energy $E_D(K_{n \times 2})$.
\[= 0 + 1 + \lfloor -2(n - 2) + \frac{(2n - 3) + \sqrt{4n^2 - 4n + 9}}{2} \rfloor + \frac{(2n - 3) - \sqrt{4n^2 - 4n + 9}}{2} \]

\[= 1 + 2(n - 2) + \sqrt{4n^2 + 4n - 7} = 2n - 3 + \sqrt{4n^2 - 4n + 9}. \square \]

Theorem 3.2. For \(n \geq 2 \), the minimum dominating energy of Star graph \(K_{1,n-1} \) is equal to \(\sqrt{4n - 3} \).

Proof. Consider the Star graph \(K_{1,n-1} \) with vertex set \(V = \{v_0, v_1, v_2, ..., v_{n-1}\} \). Minimum dominating set is \(D = \{v_0\} \). Then

\[
A_D(K_{1,n-1}) = \begin{pmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \ldots & 0
\end{pmatrix}_{n \times n},
\]

Characteristic polynomial is

\[
\begin{vmatrix}
\lambda - 1 & -1 & -1 & \ldots & -1 \\
-1 & \lambda & 0 & \ldots & 0 \\
-1 & 0 & \lambda & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & 0 & 0 & \ldots & \lambda
\end{vmatrix}
\]

Characteristic equation is \(\lambda^{n-2}(\lambda^2 - \lambda - (n - 1)) = 0 \).

The minimum dominating eigen values are:

\[\lambda = 0 \quad [(n-2) \text{ times}], \quad \lambda = \frac{1 \pm \sqrt{4n - 3}}{2} \quad [\text{one time each}]. \]

Minimum dominating energy is

\[E_D(K_{1,n-1}) = |0|(n - 2) + \frac{1 + \sqrt{4n - 3}}{2} + \frac{1 - \sqrt{4n - 3}}{2} = \sqrt{4n - 3}. \square \]

Theorem 3.3. For \(n \geq 2 \), the minimum dominating energy of complete graph \(K_n \) is \((n - 2) + \sqrt{n^2 - 2n + 5} \).

Proof. \(K_n \) is Complete graph with vertex set \(V = \{v_1, v_2, ..., v_n\} \). The minimum dominating set is \(D = \{v_1\} \). Then:

\[
A_D(K_n) = \begin{pmatrix}
1 & 1 & 1 & \ldots & 1 & 1 \\
1 & 0 & 1 & \ldots & 1 & 1 \\
1 & 1 & 0 & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \ldots & 1 & 0
\end{pmatrix}_{n \times n},
\]
Characteristic polynomial is
\[\lambda - 1 - 1 \ldots - 1 - 1 \]
Characteristic equation is \((\lambda + 1)^{n-2}(\lambda^2 - (n - 1)\lambda - 1) = 0\).
The minimum dominating eigen values are
\[\lambda = -1 \text{ [(n-2) times]}, \lambda = \frac{(n - 1) \pm \sqrt{n^2 - 2n + 5}}{2} \text{ [one time each]}. \]
Minimum dominating energy is
\[E_D(K_n) = \left| -1 \right|(n-2) + \left| \frac{(n - 1) + \sqrt{n^2 - 2n + 5}}{2} \right| + \left| \frac{(n - 1) - \sqrt{n^2 - 2n + 5}}{2} \right| \]
\[= (n - 2) + \sqrt{n^2 - 2n + 5}. \]

Definition 3.2. The crown graph \(S^0_n\) for an integer \(n \geq 2\) is the graph with vertex set \(\{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}\) and edge set \(\{u_i v_j : 1 \leq i, j \leq n, i \neq j\}\).
\(S^0_n\) coincides with the complete bipartite graph \(K_{n,n}\) with horizontal edges removed.

Theorem 3.4. For \(n \geq 2\), the minimum dominating energy of the crown graph \(S^0_n\) is equal to \(2(n - 2) + \sqrt{n^2 - 2n + 5} + \sqrt{n^2 + 2n - 3}\).

Proof. For the crown graph \(S^0_n\) with vertex set \(V = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}\), minimum dominating set is \(S = \{u_1, v_1\}\). Then

\[A_D(S^0_n) = \left(\begin{array}{ccccccccccc} 1 & 0 & 0 & \ldots & 0 & 0 & 1 & 1 & \ldots & 1 \\ 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 1 & \ldots & 1 \\ 0 & 0 & 0 & \ldots & 0 & 1 & 1 & 0 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 0 & 1 & 1 & 1 & \ldots & 0 \\ 0 & 1 & 1 & \ldots & 1 & 1 & 0 & 0 & \ldots & 0 \\ 1 & 0 & 1 & \ldots & 1 & 0 & 0 & 0 & \ldots & 0 \\ 1 & 1 & 0 & \ldots & 1 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 \end{array} \right) \]
\((2n \times 2n)\)
Characteristic polynomial is

\[
\begin{vmatrix}
\lambda - 1 & 0 & 0 & \ldots & 0 & 0 & -1 & -1 & \ldots & -1 \\
0 & \lambda & 0 & \ldots & 0 & -1 & 0 & -1 & \ldots & -1 \\
0 & 0 & \lambda & \ldots & 0 & -1 & -1 & 0 & \ldots & -1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \lambda & -1 & -1 & -1 & \ldots & 0 \\
0 & -1 & -1 & \ldots & -1 & \lambda - 1 & 0 & 0 & \ldots & 0 \\
-1 & 0 & -1 & \ldots & -1 & 0 & \lambda & 0 & \ldots & 0 \\
-1 & -1 & 0 & \ldots & -1 & 0 & 0 & \lambda & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & -1 & -1 & \ldots & 0 & 0 & 0 & 0 & \ldots & \lambda \\
\end{vmatrix}
\]

Characteristic equation is

\[
(\lambda - 1)^{n-2}(\lambda + 1)^{n-2}(\lambda^2 - (n - 1)\lambda - 1)(\lambda^2 + (n - 3)\lambda - (2n - 3)) = 0
\]

Minimum dominating eigen values are \(\lambda = 1\) \([(n - 2)\text{times}]\),
\[
\lambda = -1 \quad \text{[}(n - 2)\text{times}]\]
\[
\lambda = \frac{(n - 1) \pm \sqrt{n^2 - 2n + 5}}{2}, \quad \text{[one time each]},
\]
\[
\lambda = \frac{(3 - n) \pm \sqrt{n^2 + 2n - 3}}{2}, \quad \text{[one time each]}
\]

Minimum dominating energy

\[
E_D(S^0_n) = 1(n - 2) + | - 1| (n - 2)
\]
\[
+ \frac{(n - 1) + \sqrt{n^2 - 2n + 5}}{2} + \frac{(n - 1) - \sqrt{n^2 - 2n + 5}}{2}
\]
\[
+ \frac{(3 - n) + \sqrt{n^2 + 2n - 3}}{2} + \frac{(3 - n) - \sqrt{n^2 + 2n - 3}}{2}
\]
\[
= 2(n - 2) + \sqrt{n^2 - 2n + 5} + \sqrt{n^2 + 2n - 3}.
\]

4. Properties of Minimum Dominating Eigen Values

Theorem 4.1. Let \(G\) be a simple graph with vertex set \(V = \{v_1, v_2, \ldots, v_n\}\), edge set \(E\) and \(D = \{u_1, u_2, \ldots, u_k\}\) be a minimum dominating set. If \(\lambda_1, \lambda_2, \ldots, \lambda_n\) are the eigen values of minimum dominating matrix \(A_D(G)\) then:
\((i) \sum_{i=1}^{n} \lambda_i = |D|; \)

\((ii) \sum_{i=1}^{n} \lambda_i^2 = 2|E| + |D|. \)

Proof. (i) We know that the sum of the eigen values of \(A_D(G) \) is the trace of \(A_D(G) \)

\[
\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii} = |D| = k.
\]

(ii) Similarly the sum of squares of the eigen values of \(A_D(G) \) is trace of \([A_D(G)]^2\)

\[
\sum_{i=1}^{n} \lambda_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}a_{ji} \\
= \sum_{i=1}^{n} (a_{ii})^2 + \sum_{i \neq j} a_{ij}a_{ji} \\
= \sum_{i=1}^{n} (a_{ii})^2 + 2\sum_{i<j} (a_{ij})^2 \\
= |D| + 2|E|. \]

\[\square\]

5. Bounds for Minimum Dominating Energy

Similar to McClelland’s [12] bounds for energy of a graph, bounds for \(E_D(G) \) are given in the following theorem.

Theorem 5.1. Let \(G \) be a simple graph with \(n \) vertices and \(m \) edges. If \(D \) is the minimum dominating set and \(P = |detA_D(G)| \) then

\[
\sqrt{(2m + k) + n(n - 1)P^2} \leq E_D(G) \leq \sqrt{n(2m + k)},
\]

where \(k \) is domination number.

Proof.

Cauchy Schwarz inequality is

\[
\left(\sum_{i=1}^{n} a_i b_i \right)^2 \leq \left(\sum_{i=1}^{n} a_i^2 \right) \left(\sum_{i=1}^{n} b_i^2 \right)
\]
If \(a_i = 1, b_i = |\lambda_i| \) then
\[
\left(\sum_{i=1}^{n} |\lambda_i| \right)^2 \leq \left(\sum_{i=1}^{n} 1 \right) \left(\sum_{i=1}^{n} \lambda_i^2 \right)
\]
\[
[E_D(G)]^2 \leq n(2m + k) \quad \text{[Theorem 4.1]}
\]
\[
\implies E_D(G) \leq \sqrt{n(2m + k)}
\]

Since arithmetic mean is not smaller than geometric mean we have

\[
\frac{1}{n(n-1)} \sum_{i \neq j} |\lambda_i| |\lambda_j| \geq \left[\prod_{i \neq j} |\lambda_i| \right] \frac{1}{n(n-1)}
\]
\[
= \left[\prod_{i=1}^{n} |\lambda_i| \right]^{\frac{2(n-1)}{n}} \frac{1}{n(n-1)}
\]
\[
= \left[\prod_{i=1}^{n} |\lambda_i| \right]^{\frac{2}{n}}
\]
\[
= |detA_D(G)|^{\frac{2}{n}} = P_\pi^2
\]
\[
\sum_{i \neq j} |\lambda_i| |\lambda_j| \geq n(n-1)P_\pi^2 \quad (1)
\]

Now consider,
\[
[E_D(G)]^2 = \left(\sum_{i=1}^{n} |\lambda_i| \right)^2
\]
\[
= \sum_{i=1}^{n} |\lambda_i|^2 + \sum_{i \neq j} |\lambda_i| |\lambda_j|
\]
\[
[E_D(G)]^2 \geq (k + 2m) + n(n-1)P_\pi^2 \quad \text{[From (5.1)]}
\]
\[
i.e., \quad E_D(G) \geq \sqrt{(k + 2m) + n(n-1)P_\pi^2}.
\]

Theorem 5.2. If \(\lambda_1(G) \) is the largest minimum dominating eigen value of \(A_D(G) \), then \(\lambda_1(G) \geq \frac{2m + k}{n} \) where \(k \) is the domination number.
Proof. Let X be any nonzero vector. Then by [1],

We have $\lambda_1(A) = \max_{X \neq 0} \left\{ \frac{X'AX}{X'X} \right\}$.

$\lambda_1(A) \geq \frac{J'AJ}{J'J} = \frac{2m + k}{n}$ where J is a unit matrix.

Similar to Koolen and Moulton’s [13] upper bound for energy of a graph, upper bound for $E_D(G)$ is given in the following theorem.

Theorem 5.3. If G is a graph with n vertices and m edges and $(2m + k) \geq n$ then

$$E_D(G) \leq \frac{2m + k}{n} + \sqrt{(n - 1) \left[(2m + k) - \left(\frac{2m + k}{n} \right)^2 \right]}$$

where k is a domination number.

Proof. Cauchy-Schwartz inequality is

$$\left[\sum_{i=2}^{n} a_i b_i \right]^2 \leq \left(\sum_{i=2}^{n} a_i^2 \right) \left(\sum_{i=2}^{n} b_i^2 \right)$$

Put $a_i = 1, b_i = |\lambda_i|$, then

$$\left(\sum_{i=2}^{n} |\lambda_i| \right)^2 = \sum_{i=2}^{n} 1 \sum_{i=2}^{n} \lambda_i^2$$

$$\Rightarrow [E_D(G) - \lambda_1]^2 \leq (n - 1)(2m + k - \lambda_1^2)$$

$$\Rightarrow E_D(G) \leq \lambda_1 + \sqrt{(n - 1)(2m + k - \lambda_1^2)}$$

Let $f(x) = x + \sqrt{(n - 1)(2m + k - x^2)}$

For decreasing function $f'(x) \leq 0 \Rightarrow 1 - \frac{x(n - 1)}{\sqrt{(n - 1)(2m + k - x^2)}} \leq 0$

$$\Rightarrow x \geq \sqrt{\frac{2m + k}{n}}$$

Since $(2m + k) \geq n$, we have $\sqrt{\frac{2m + k}{n}} \leq \frac{2m + k}{n} \leq \lambda_1$

$$f(\lambda_1) \leq f\left(\frac{2m + k}{n} \right)$$

i.e. $E_D(G) \leq f(\lambda_1) \leq f\left(\frac{2m + k}{n} \right)$
i.e. \(E_D(G) \leq f\left(\frac{2m+k}{n}\right) \)

i.e. \(E_D(G) \leq \frac{2m+k}{n} + \sqrt{(n-1)\left[2m+k - \left(\frac{2m+k}{n}\right)^2\right]} \). \(\square \)

Bapat and S.Pati [2] proved that if the graph energy is a rational number then it is an even integer. Similar result for minimum dominating energy is given in the following theorem.

Theorem 5.4. Let \(G \) be a graph with a minimum dominating set \(D \). If the minimum dominating energy \(E_D(G) \) is a rational number, then \(E_D(G) \equiv |D| \pmod{2} \).

Proof. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be minimum dominating eigen values of a graph \(G \) of which \(\lambda_1, \lambda_2, \ldots, \lambda_r \) are positive and the rest are non-positive, then

\[\sum_{i=1}^{n} |\lambda_i| = (\lambda_1 + \lambda_2 + \ldots + \lambda_r) - (\lambda_{r+1} + \ldots + \lambda_n) \]

\[\sum_{i=1}^{n} |\lambda_i| = 2(\lambda_1 + \lambda_2 + \ldots + \lambda_r) - (\lambda_1 + \lambda_2 + \ldots + \lambda_n) \]

i.e. \(E_D(G) = 2(\lambda_1 + \lambda_2 + \ldots + \lambda_r) - \sum_{i=1}^{n} \lambda_i \)

i.e. \(E_D(G) = 2(\lambda_1 + \lambda_2 + \ldots + \lambda_r) - |D| \)

\(E_D(G) \equiv |D| \pmod{2} \).

Hence the theorem holds true. \(\square \)

References

