GEOMETRICAL HYPERCOMPLEX COUPLING BETWEEN ELECTRIC AND GRAVITATIONAL FIELDS

J.A.P.F. Marão¹, M.F. Borges² §

¹Department of Mathematics
Federal University of Maranhão – São Luís-MA
65085-580, Maranhão, BRAZIL

²UNESP - São Paulo State University
S.J. Rio Preto Campus
15054-000, São José do Rio Preto, BRAZIL

Abstract: The present work shows a coupling of electrical and gravitational fields through Cauchy-Riemann conditions for quaternions present in a previous paper [1]. It is also obtained an extended version of the Laplace-like equations for quaternions, now written in terms of both electric and gravitational fields.

AMS Subject Classification: 30G99, 30E99
Key Words: quaternions, Laplace’s equations, quate

1. Initial Provisions

Throughout this work, are considered quaternionic functions which follow the pattern $f_i(t, x, y, z)$, with $i = 1, 2, 3, 4$, where t is the time and the coordinates x, y and z are considered the spatial coordinates. Thus, the quaternion q is written here as follows:

$$q = t + xi + yj + zk,$$

or

$$q = t + \mathbf{u}.$$ \hfill (1)

The next section based on a paper by Borges and Machado [2] shows a set

Received: May 7, 2013

© 2013 Academic Publications, Ltd.

url: www.acadpubl.eu

§Correspondence author
Cauchy-Riemann like relations for quaternionic functions. These equations will be adapted to the particular case where \(x_1 \) will be replaced by the time and the other coordinates \(x_2, x_3 \) and \(x_4 \) will be identified here for \(x, y \) and \(z \), respectively.

2. Cauchy-Riemann Conditions for Quaternionic Functions

The conditions named here as Cauchy-Riemann like relations for quaternionic functions, are treated in detail in [1]. It follows the theorem:

Theorem 1. For any pair points \(a \) and \(b \) and any path joining them simply connect subdomain of the four-dimensional space, the integral \(\int_a^b f dq \) is independent form the given path if and only if there is a function \(F = F_1 + F_2i + F_3j + F_4k \) such that \(\int_a^b f dq = F(a)F(b) \), and satisfying the following relations:

\[
\begin{align*}
\frac{\partial F}{\partial t} &= \frac{\partial F_2}{\partial x} = \frac{\partial F_3}{\partial y} = \frac{\partial F_4}{\partial z}, \\
\frac{\partial F_2}{\partial t} &= -\frac{\partial F_1}{\partial x} = -\frac{\partial F_3}{\partial z} = \frac{\partial F_4}{\partial y}, \\
\frac{\partial F_3}{\partial t} &= -\frac{\partial F_1}{\partial y} = -\frac{\partial F_2}{\partial z} = \frac{\partial F_4}{\partial x}, \\
\frac{\partial F_4}{\partial t} &= \frac{\partial F_1}{\partial z} = -\frac{\partial F_2}{\partial y} = \frac{\partial F_3}{\partial x}.
\end{align*}
\]

Proof. The proof of this theorem can be analyzed in greater detail in [1].

3. The Laplace’s Equations

In this section it will be determined that from the relations showed in Theorem 1, naturally follows a new set of quaternionic Laplacelike equations. Therefore, the functions that make up the quaternionic function depend on \(t, x, y \) and \(z \) and are supposed of class \(C^2 \).

The first step to obtain the Laplace equations is the derivation of equations (5), (6), (7) and (8) over \(t, x, y \) and \(z \). That will be done as follows: Deriving
the conditions of equation (5), we have that:
\[
\begin{align*}
\frac{\partial^2 F_1}{\partial y \partial t} &= \frac{\partial^2 F_2}{\partial t \partial x} = \frac{\partial^2 F_3}{\partial t \partial y} = \frac{\partial^2 F_4}{\partial t \partial z} \\
\frac{\partial^2 F_1}{\partial t \partial x} &= \frac{\partial^2 F_2}{\partial y \partial x} = \frac{\partial^2 F_3}{\partial x \partial y} = \frac{\partial^2 F_4}{\partial x \partial z} \\
\frac{\partial^2 F_1}{\partial t \partial y} &= \frac{\partial^2 F_2}{\partial y \partial y} = \frac{\partial^2 F_3}{\partial y \partial y} = \frac{\partial^2 F_4}{\partial z \partial y} \\
\frac{\partial^2 F_1}{\partial t \partial z} &= \frac{\partial^2 F_2}{\partial z \partial x} = \frac{\partial^2 F_3}{\partial z \partial y} = \frac{\partial^2 F_4}{\partial z^2}.
\end{align*}
\] (7)

Deriving the conditions of equation (6), we obtain:
\[
\begin{align*}
\frac{\partial^2 F_2}{\partial^2 t} &= -\frac{\partial^2 F_1}{\partial t \partial x} = -\frac{\partial^2 F_3}{\partial t \partial z} = \frac{\partial^2 F_4}{\partial t \partial y} \\
\frac{\partial^2 F_2}{\partial t \partial x} &= -\frac{\partial^2 F_1}{\partial x^2} = \frac{\partial^2 F_3}{\partial x \partial z} = \frac{\partial^2 F_4}{\partial x \partial y} \\
\frac{\partial^2 F_2}{\partial t \partial y} &= -\frac{\partial^2 F_1}{\partial y^2} = -\frac{\partial^2 F_3}{\partial y \partial z} = \frac{\partial^2 F_4}{\partial y \partial y} \\
\frac{\partial^2 F_2}{\partial t \partial z} &= -\frac{\partial^2 F_1}{\partial z^2} = \frac{\partial^2 F_3}{\partial z \partial x} = \frac{\partial^2 F_4}{\partial z \partial y}.
\end{align*}
\] (8)

Deriving the conditions of equation (7), we obtain:
\[
\begin{align*}
\frac{\partial^2 F_3}{\partial^2 t} &= \frac{\partial^2 F_1}{\partial t \partial y} = \frac{\partial^2 F_2}{\partial t \partial z} = -\frac{\partial^2 F_4}{\partial t \partial x} \\
\frac{\partial^2 F_3}{\partial t \partial x} &= \frac{\partial^2 F_1}{\partial x \partial y} = -\frac{\partial^2 F_2}{\partial x \partial z} = \frac{\partial^2 F_4}{\partial x^2} \\
\frac{\partial^2 F_3}{\partial t \partial y} &= \frac{\partial^2 F_1}{\partial y^2} = \frac{\partial^2 F_2}{\partial y \partial z} = -\frac{\partial^2 F_4}{\partial y \partial x} \\
\frac{\partial^2 F_3}{\partial t \partial z} &= \frac{\partial^2 F_1}{\partial z^2} = -\frac{\partial^2 F_2}{\partial z \partial x} = -\frac{\partial^2 F_4}{\partial z \partial y}.
\end{align*}
\] (9)

And finally, in deriving the conditions of equation (8), it follows that:
\[
\begin{align*}
\frac{\partial^2 F_4}{\partial^2 t} &= \frac{\partial^2 F_1}{\partial t \partial z} = -\frac{\partial^2 F_2}{\partial t \partial y} = -\frac{\partial^2 F_3}{\partial t \partial x} \\
\frac{\partial^2 F_4}{\partial t \partial x} &= \frac{\partial^2 F_1}{\partial x \partial z} = -\frac{\partial^2 F_2}{\partial x \partial y} = \frac{\partial^2 F_3}{\partial x^2} \\
\frac{\partial^2 F_4}{\partial t \partial y} &= \frac{\partial^2 F_1}{\partial y^2} = \frac{\partial^2 F_2}{\partial y \partial z} = \frac{\partial^2 F_3}{\partial y \partial x} \\
\frac{\partial^2 F_4}{\partial t \partial z} &= \frac{\partial^2 F_1}{\partial z^2} = -\frac{\partial^2 F_2}{\partial z \partial x} = \frac{\partial^2 F_3}{\partial z \partial y}.
\end{align*}
\] (10)
Correlating groups of partial derivatives in (9), (10), (11) and (12), then immediately follows the Laplace-like Equations:

\[\frac{\partial^2 F_1}{\partial t^2} + \frac{\partial^2 F_1}{\partial x^2} + \frac{\partial^2 F_1}{\partial y^2} + \frac{\partial^2 F_1}{\partial z^2} = 0 \] \hspace{1cm} (11)

\[\frac{\partial^2 F_2}{\partial t^2} + \frac{\partial^2 F_2}{\partial x^2} + \frac{\partial^2 F_2}{\partial y^2} + \frac{\partial^2 F_2}{\partial z^2} = 0 \] \hspace{1cm} (12)

\[\frac{\partial^2 F_3}{\partial t^2} + \frac{\partial^2 F_3}{\partial x^2} + \frac{\partial^2 F_3}{\partial y^2} + \frac{\partial^2 F_3}{\partial z^2} = 0 \] \hspace{1cm} (13)

and

\[\frac{\partial^2 F_4}{\partial t^2} + \frac{\partial^2 F_4}{\partial x^2} + \frac{\partial^2 F_4}{\partial y^2} + \frac{\partial^2 F_4}{\partial z^2} = 0 \] \hspace{1cm} (14)

Taking now into account the functions \(F_3(t, x, y, z) \) and \(F_4(t, x, y, z) \) at (13) and (14), and making the limit in these equations when \(t \) tends to zero, we have that:

\[\lim_{t \to 0} \left[\frac{\partial^2 F_3(t, x, y, z)}{\partial t^2} + \frac{\partial^2 F_3(t, x, y, z)}{\partial x^2} + \frac{\partial^2 F_3(t, x, y, z)}{\partial y^2} + \frac{\partial^2 F_3(t, x, y, z)}{\partial z^2} \right] = 0, \] \hspace{1cm} (15)

and

\[\lim_{t \to 0} \left[\frac{\partial^2 F_4(t, x, y, z)}{\partial t^2} + \frac{\partial^2 F_4(t, x, y, z)}{\partial x^2} + \frac{\partial^2 F_4(t, x, y, z)}{\partial y^2} + \frac{\partial^2 F_4(t, x, y, z)}{\partial z^2} \right] = 0. \] \hspace{1cm} (16)

As already mentioned earlier, the functions \(F_3 \) and \(F_4 \) are of class \(C^2 \) and thus making the limit as \(t \) tends to zero, these functions will depend only of \(x, y \) and \(z \), and will be denoted by \(\varphi(x, y, z) \) and \(\Phi(x, y, z) \), respectively. Moreover, in the second set of partial derivatives respect to \(t \) in the limit as \(t \) tends to zero are allowed constants, and now will be made the following identifications:

\[\lim_{t \to 0} \frac{\partial^2 F_3(t, x, y, z)}{\partial t^2} = \frac{\rho_f}{\varepsilon} \] \hspace{1cm} (17)

and

\[\lim_{t \to 0} \frac{\partial^2 F_4(t, x, y, z)}{\partial t^2} = 4\pi G \rho, \] \hspace{1cm} (18)
where ρ_f is free charge density, ε is permittivity of the medium. Furthermore, ρ is density and G is gravitational constant. Soon, with the identifications and the limits indicated above, we have the following equations:

$$\frac{\partial^2 \varphi(x, y, z)}{\partial x^2} + \frac{\partial^2 \varphi(x, y, z)}{\partial y^2} + \frac{\partial^2 \varphi(x, y, z)}{\partial z^2} = \frac{-\rho_f}{\varepsilon}$$

and

$$\frac{\partial^2 \Phi(x, y, z)}{\partial x^2} + \frac{\partial^2 \Phi(x, y, z)}{\partial y^2} + \frac{\partial^2 \Phi(x, y, z)}{\partial z^2} = -4\pi G \rho$$

There is the possibility of determining the solutions of the equations above, but considering that they are related by the Cauchy-Riemann conditions, after the treatment is again considered the limit when t tends to zero. Therefore, a system of partial differential equations, which arise from the Riemann Cauchy like conditions, is presented only for the functions F_3 and F_4. It follows that:

$$\frac{\partial^2 F_3}{\partial t \partial y} = \frac{\partial^2 F_4}{\partial t \partial z}, \quad \frac{\partial^2 F_3}{\partial x \partial y} = \frac{\partial^2 F_4}{\partial x \partial z},$$

$$\frac{\partial^2 F_3}{\partial y^2} = \frac{\partial^2 F_4}{\partial z \partial y}, \quad \frac{\partial^2 F_3}{\partial z \partial y} = \frac{\partial^2 F_4}{\partial z^2},$$

$$-\frac{\partial^2 F_3}{\partial t \partial z} = \frac{\partial^2 F_4}{\partial t \partial y}, \quad -\frac{\partial^2 F_3}{\partial x \partial z} = \frac{\partial^2 F_4}{\partial y \partial x},$$

$$-\frac{\partial^2 F_3}{\partial y \partial z} = \frac{\partial^2 F_4}{\partial y^2}, \quad -\frac{\partial^2 F_3}{\partial z \partial y} = \frac{\partial^2 F_4}{\partial z^2}$$

$$\frac{\partial^2 F_3}{\partial t^2} = \frac{\partial^2 F_4}{\partial t \partial x}, \quad \frac{\partial^2 F_3}{\partial t \partial x} = \frac{\partial^2 F_4}{\partial x^2},$$

$$\frac{\partial^2 F_3}{\partial y \partial t} = \frac{\partial^2 F_4}{\partial y \partial x}, \quad \frac{\partial^2 F_3}{\partial t \partial z} = \frac{\partial^2 F_4}{\partial z \partial x},$$

$$\frac{\partial^2 F_4}{\partial t^2} = -\frac{\partial^2 F_3}{\partial t \partial x}, \quad \frac{\partial^2 F_4}{\partial t \partial x} = -\frac{\partial^2 F_3}{\partial x^2},$$

$$\frac{\partial^2 F_4}{\partial y \partial t} = -\frac{\partial^2 F_3}{\partial y \partial x}, \quad \frac{\partial^2 F_4}{\partial t \partial z} = -\frac{\partial^2 F_3}{\partial z \partial x}.$$
\[
\lim_{t \to 0} \frac{\partial^2 F_4}{\partial t^2} = 4\pi G\rho, \quad \lim_{t \to 0} \frac{\partial^2 F_3}{\partial t^2} = \frac{\rho f}{\varepsilon},
\]
\[
\frac{\partial F_3}{\partial y} = \frac{\partial F_4}{\partial z}, \quad -\frac{\partial F_3}{\partial z} = \frac{\partial F_4}{\partial y},
\]
\[
\frac{\partial F_3}{\partial t} = \frac{\partial F_4}{\partial x}, \quad \frac{\partial F_4}{\partial t} = -\frac{\partial F_3}{\partial x}.
\] (21)

The above system has the following solution (solution that verifies the Laplace like Equation for \(F_3\) and \(F_4\), where \(C_1\) and \(C_2\) are constants. Hence it follows that:

\[
F_3(t, x, y, z) = -\frac{1}{2} \left(\frac{\rho f}{\varepsilon} \right) x^2 - (4\pi \rho G t + f_1(z - yi) + f_2(z + yi)) x
\]
\[
+ \frac{1}{2} \left(\frac{\rho f}{\varepsilon} \right) t^2 + (if_1(z - yi) - if_2(z + yi) + C_1)t + if_3(z - yi)
\]
\[
- if_4(z + yi) + C_2,
\] (22)

and

\[
F_4(t, x, y, z) = \frac{1}{2} (4\pi \rho G) t^2 - \left(\left(\frac{\rho f}{\varepsilon} \right) x + f_1(z - iy) + f_2(z + iy) \right) t
\]
\[
- \frac{1}{2} (4\pi \rho G) x^2 + (if_1(z - iy) - if_2(z + iy) + C_1)x + f_3(z - y)
\]
\[
+ f_4(z + iy).
\] (23)

Making \(F_3 - iF_4\) the threshold \(t\) tends to zero, ie, \(F_3(x, y, z) - iF_4(x, y, z)\) we have that:

\[
F_3(x, y, z) - iF_4(x, y, z) = -\frac{1}{2} \left(\frac{\rho f}{\varepsilon} \right) x^2 + \frac{1}{2} (4\pi G\rho) x^2 i - 2f_2(z + iy)x
\]
\[
+ C_2 - C_1 xi - 2if_4(z + iy).
\] (24)

On the other hand, performing the partial derivatives of the above functions and taken to the limit when \(t \to 0\), and making the appropriate identifications, we have that:

\[
i \frac{\partial F_3}{\partial y}(x, y, z) = -Df_1(z - iy)x + Df_2(z + iy)x + iDf_3(z - iy) + iDf_4(z + iy),
\] (25)

\[
\frac{\partial F_4}{\partial y}(x, y, z) = Df_1(z - iy)x + Df_2(z + iy)x - iDf_3(z - iy) + iDf_4(z + iy),
\] (26)
which together give us:

\[
\frac{\partial F_4}{\partial y}(x, y, z) + i \frac{\partial F_3}{\partial y}(x, y, z) = 2Df_2(z + iy)x + 2iDf_4(z + iy)x. \tag{27}
\]

Similarly,

\[
i \frac{\partial F_3}{\partial z}(x, y, z) = -iDf_1(z - iy)x - iDf_2(z + iy)x - Df_3(z - iy) + Df_4(z + iy), \tag{28}
\]

\[
\frac{\partial F_4}{\partial z}(x, y, z) = iDf_1(z - iy)x - iDf_2(z + iy)x + Df_3(z - iy) + iDf_4(z + iy), \tag{29}
\]

which together generate the following equality:

\[
\frac{\partial F_4}{\partial z}(x, y, z) + i \frac{\partial F_3}{\partial z}(x, y, z) = -2iDf_2(z + iy)x + 2Df_4(z + iy). \tag{30}
\]

Finally, by taking the sum:

\[
\frac{\partial F_4}{\partial y}(x, y, z) + i \frac{\partial F_3}{\partial y}(x, y, z) - \frac{\partial F_3}{\partial z}(x, y, z) + i \frac{\partial F_4}{\partial z}(x, y, z) = 4Df_1(z + iy)x + 4iDf_4(z + iy), \tag{31}
\]

or

\[
\left(\frac{\partial F_4}{\partial y}(x, y, z) - \frac{\partial F_3}{\partial z}(x, y, z)\right) + i \left(\frac{\partial F_3}{\partial y}(x, y, z) + \frac{\partial F_4}{\partial z}(x, y, z)\right) = 4Df_1(z + iy)x + 4iDf_4(z + iy). \tag{32}
\]

Integrating the terms of \(f_1(z + iy)\) and \(f_4(z + iy)\) we have:

\[
4Df_1(z + iy)x = \left(\frac{\partial F_4}{\partial y}(x, y, z) - \frac{\partial F_3}{\partial z}(x, y, z)\right); \tag{33}
\]

that is equal to

\[
f_1(z + iy)x = -\frac{1}{2}(F_3(x, y, z) - F_3(x, y, z_0)) + \frac{i}{2}(F_4(x, y, z) - F_4(x, y_0, z)). \tag{34}
\]

Similarly, we have:

\[
f_4(z + iy) = \frac{1}{2}(F_4(x, y, z) - F_4(x, y, z_0)) + \frac{i}{2}(F_3(x, y, z) - F_3(x, y_0, z)). \tag{35}
\]

Substituting the above results integrated \(y_0\) to \(y\) and \(z_0\) by \(z\) and substituting in equation (24) it follows that:
\((-1)[F_3(x, y, z) - F_3(x, y, z_0) - F_3(x, y_0, z)]\)

\[= \left(-\frac{1}{2}\left(\frac{\rho_f}{\varepsilon}\right)x^2 + C_2 \right) + i\left(\frac{1}{2}(4\pi G \rho)x^2 + C_1 x\right), \quad (36)\]

or

\[[F_3(x, y, z) - F_3(x, y, z_0) - F_3(x, y_0, z)]^2 + [F_4(x, y, z) - F_4(x, y, z_0) - F_4(x, y_0, z)]^2 = \left(\frac{1}{2}\left(\frac{\rho_f}{\varepsilon}\right)x^2 - C_2\right)^2 + \left(\frac{1}{2}(4\pi G \rho)x^2 + C_1 x\right)^2. \quad (37)\]

The results of this work can be summarized in the following theorem:

Theorem 2. Let \(f(q)\) quaternionic function that satisfies the Cauchy-Riemann conditions. If \(f(q)\) is of class \(C^2\), then it is possible to determine a relationship between gravitational and electrical potential as listed below:

\[[F_3(x, y, z) - F_3(x, y, z_0) - F_3(x, y_0, z)]^2 + [F_4(x, y, z) - F_4(x, y, z_0) - F_4(x, y_0, z)]^2 = \left(\frac{1}{2}\left(\frac{\rho_f}{\varepsilon}\right)x^2 - C_2\right)^2 + \left(\frac{1}{2}(4\pi G \rho)x^2 + C_1 x\right)^2. \quad (38)\]

4. Conclusion

The present results in the previous sections, showed the feasibility of obtaining the equations of Laplace through the Cauchy-Riemann like conditions for quaternions. This fact will allow the relationship between equations that can explain such physical phenomena e. g. the possibility of a geometrical coupling regarding gravitational and electric fields. You can also use the above equations as a way of stating the theorem for harmonic functions that satisfy the Cauchy conditions.

References
