
International Journal of Pure and Applied Mathematics

Volume 95 No. 2 2014, 253-296
ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: http://dx.doi.org/10.12732/ijpam.v95i2.12

PA
ijpam.eu

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR

DAMPED LINEAR HYPERBOLIC EQUATIONS WITH

DIRICHLET BOUNDARY CONDITIONS

Hacene Bennour1 §, Mohamed Said Said2

1Department of Mathematics
Kasdi Merbah- Ouargla University

Ouargla, 30000, ALGERIA
2Department of Mathematics

Kasdi Merbah- Ouargla University
Ouargla, 30000, ALGERIA

Abstract: We consider damped linear hyperbolic equations with Dirichlet
boundary conditions. We prove the existence, uniqueness, and regularity of the
solution. We apply semi-discretization in time technique.

AMS Subject Classification: 35A01, 35A02, 35L20
Key Words: linear hyperbolic equations, damping, Faedo-Galerkin method,
discretization in time

1. Introduction

In this paper, we study the initial boundary value problem for the following
damped linear hyperbolic equations with Dirichlet boundary conditions.











∂2u
∂t2

+ η ∂u
∂t

−∆u = f(x, t), x ∈ Ω, t ∈]0, T [,
u(t, x) = 0, on Σ,

u(0, x) = u0(x),
∂u(0,x)

∂t
= u1(x), x ∈ Ω.

(1)

where η is the constant damping coefficient, η ∈ R and T finite, Ω is a bounded
open domain in R

n, n ≥ 1, with a smooth boundary ∂Ω. We denote by Q the
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cylinder of R
n
x × Rt, Q = Ω×]0, T [ and by Σ the lateral boundary of Q, Σ =

∂Ω×]0, T [, ∆u = Σn
i=1

∂2u
∂x2

i

is the Laplacian, and linear function f : Ω×]0, T [−→
R for i = 0, 1, the functions ui : Ω −→ R, are given. we find a function
u = u(x, t), is a real-valued satisfies (1).

This Problem has its origin in a physical problem, we study a model that
describes the transverse vibrations of a membrane Ω fixed at its ends and in
the presence of damping η. Let u(x, t) be the vertical position of x ∈ Ω at time
t ∈ [0, T ], is retarded by a damping force proportional to the velocity of the
membrane, then u satisfies (1).

This problem has been already investigated by many authors.

For example in ([2]), ([7]), ([17]).
We define some function spaces required to establish the existence and

uniqueness of solution to (1). We use the function spaces for any 1 ≤ p < ∞,
Lp(Ω) is the space of real measurable functions u : Ω −→ R for the Lebesgue
measure dx, it is a Banach space for the following norm

‖u‖Lp(Ω) = (

∫

Ω
|u(x)|pdx)

1

p < +∞

for p = 2, L2(Ω) is a Hilbert space for the scalar product

(u, v) =

∫

Ω
u(x)v(x)dx,

the corresponding norm being denoted ‖u‖,

‖u‖ = (

∫

Ω
u2(x)dx)

1

2 .

if X is a Banach space, 1 ≤ p < ∞, Lp(0, T ;X) is the space of measurable
functions u of ]0, T [ into X for the Lebesgue measure dt, which is Banach space
for the following norm

‖u‖Lp(0,T ;X) = (

∫ T

0
‖u(t)‖pXdt)

1

p < +∞

if X = Lp(Ω), then Lp(]0, T [;Lp(Ω)) = Lp(Q).

L∞(0, T ;X) is the space of measurable functions from ]0, T [ into X which
are essentially bounded, the space is Banach for the following norm

‖u‖L∞(0,T ;X) = sup
t∈]0,T [

ess‖u(t)‖X
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we denote by C ([0, T ];X) the space of continuous functions from [0, T ] into X,
the space is Banach for the following norm

‖u‖C ([0,T ];X) = sup
t∈[0,T ]

‖u(t)‖X ,

and by C k([0, T ];X), k ∈ N the space of k times continuously differentiable
functions from [0, T ] into X, it is a Banach spaces for the following norm

‖u‖C k([0,T ];X) = Σk
j=0‖

dju

dtj
‖C ([0,T ];X)

we denote by C∞(Ω) the space of infinitely times continuously differentiable
functions on Ω. The space C∞(Ω) of real functions on Ω, with a compact
support in Ω, is denoted by D(Ω), as in the theory of distributions of L.Schwartz
in ([8]), D ′(Ω) is the space of distributions on Ω.

We introduce the Sobolev spaces, for m ∈ N, 1 ≤ p ≤ ∞, Wm,p(Ω) is the
space of functions u in Lp(Ω) whose distribution derivatives of order ≤ m are
in Lp(Ω). This is a Banach space for the norm

‖u‖Wm,p(Ω) = Σ|α|≤m‖Dαu‖Lp(Ω)

where

Dαu =
∂α1+···+αnu

∂xα1

1 · · · ∂xαn
n
, α = {α1, · · · , αn} ∈ N

n,

|α| = α1 + · · ·+ αn and Diu =
∂u

∂xi
, i = 1, 2, · · · , n.

When p = 2 we write Wm,2(Ω) = Hm(Ω) and this is a Hilbert space for the
scalar product

(u, v)Hm(Ω) = Σ|α|≤m(D
αu,Dαv).

we use the space H1
0 (Ω)

H1
0 (Ω) = the closure of D(Ω) in H1(Ω) (2)

for study the problem (1) we introduce the space

V = H1
0 (Ω), (3)

V is a Hilbert space for the scalar product

(u, v)V = Σn
i=1(

∂u

∂xi
,
∂v

∂xi
)
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and that the corresponding norm

‖u‖V = {(u, u)V }
1

2

with dual V ′ = H−1(Ω), the corresponding norm on V ′ is

‖l‖∗ = sup
u∈V

|〈l, u〉|
‖u‖V

for any l ∈ V ′ and u 6= 0, where 〈., .〉 is the scalar product between V and V ′.
To given linear continuous operator A ∈ L (V, V ′), we can associate a bilinear
continuous form a on V by setting

a(u, v) = 〈Au, v〉, ∀u, v ∈ V, (4)

such that L (V, V ′) is the space of linear continuous operators from V into V ′.
conversely, to given a bilinear continuous form a on V , we can associate with
a a linear continuous operator A from V into V ′, and from the properties of a
that A is linear continuous, and by the continuity of a if

|a(u, v)| ≤ C‖u‖V ‖v‖V , C > 0, ∀u, v ∈ V, (5)

then
‖A‖∗ ≤ C (6)

If a(u, v) = (u, v)V is the scalar product of V , that a is coercive,

a(u, u) ≥ α‖u‖2V , 0 ≤ α ≤ 1, ∀u ∈ V. (7)

The Riesz representation theorem to show that each a linear continuous form
on H can be represented with the aid of scalar product. Let H ′ the dual space
of H, to given φ ∈ H ′ there exists a unique f ∈ H such that the application
φ −→ f is an isomorphism and isometric that allows us to identify H to the
dual space H ′.

In general, but not always, it is also convenient to identify H to its dual H ′.
We write position typical where is not place of performance this identification.
Let H = L2(Ω), and V = H1

0 (Ω) is a dense in L2(Ω) since that V it is a
Banach space reflexive, we assume that the canonical injection of V in H being
continuous, then identify, H ′ ≡ H and H ⊂ V ′ from the following assertion:

For given f ∈ H, the application v ∈ V −→ (f, v) of V into R is linear
continuous on H and by priority on V , denote by Tf ∈ V ′ such that

〈Tf, v〉 = (f, v), ∀f ∈ H, ∀v ∈ V

where T : H −→ V ′ satisfies the following proprieties
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(i) ‖Tf‖∗ ≤ C‖f‖, for any f ∈ H,

(ii) T is injective

(iii) T (H) is a dense in V ′

from T , we have H ⊂ V ′ then we obtain

V ⊂ H ≡ H ′ ⊂ V ′, (8)

where each space is dense in the following, the injections being continuous.
We recall some basic results for using in the proof of our main results.

2. Preliminaries

Lemma 1. If u(x, t) ∈ L1(Ω× [0, T ]) satisfies

∫

Ω
u(x, t)dx ≤ C +B

∫ t

0
(

∫

Ω
u(x, s)dx)ds, C ∈ R, B > 0

then
∫

Ω
u(x, t)dx ≤ CeBt, x ∈ Ω, t ∈ [0, T ].

Proof. we have the inequality

∫

Ω
u(x, t)dx ≤ C +B

∫ t

0
(

∫

Ω
u(x, s)dx)ds ≤

C +B

∫ t

0
[C +B

∫ s

0
(

∫

Ω
u(x, σ)dx)dσ]ds =

C(1 +Bt) +B2

∫ t

0
(t− s)(

∫

Ω
u(x, s)dx)ds

then, we have

∫

Ω
u(x, t)dx ≤ C(1 +Bt) +B2

∫ t

0
(t− s)(

∫

Ω
u(x, s)dx)ds ≤

C(1 +Bt) +B2

∫ t

0
(t− s)[C +B(

∫ s

0
(

∫

Ω
u(x, σ)dx)dσ]ds =

C(1 +Bt+B2 t
2

2
) +B3

∫ t

0

(t− s)2

2
(

∫

Ω
u(x, s)dx)ds
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by backward we obtain :

∫

Ω
u(x, t)dx ≤ C(1 +Bt+B2 t

2

2
+ · · · +Bn t

n

n!
) +

Bn+1

∫ t

0

(t− s)n

n!
(

∫

Ω
u(x, s)dx)ds

pass to the limit as n −→ +∞, we obtain

∫

Ω
u(x, t)dx ≤ CeBt.

Lemma 2. If u ∈ Lp(0, T ;X) and ∂u
∂t

∈ Lp(0, T ;X), 1 ≤ p ≤ ∞ then u is
a continuous from [0, T ] into X, almost everywhere on [0, T ].

Proof. We find u solution of the problem (1) in the space L∞(0, T ;X) then
we need the derivative ∂u

∂t
in the space L∞(0, T ;X) we prove ∂u

∂t
∈ Lp(0, T ;X)

if u ∈ Lp(0, T ;X) where 1 ≤ p ≤ ∞.

In ([9]), D ′(0, T ;X) is the space of distributions from ]0, T [ into X, defined
by

D
′(0, T ;X) = L (D(]0, T [);X).

if u ∈ D ′(0, T ;X), the distributional derivative is defined by

∂u

∂t
(ϕ) = −u(dϕ

dt
), ϕ ∈ D(]0, T [) (9)

if u ∈ Lp(0, T ;X), the corresponding distribution is also defined by u from ]0, T [
into X, such that

u(ϕ) =

∫ T

0
u(t)ϕ(t)dt, ϕ ∈ D(]0, T [),

the integral u(ϕ) ∈ X; we can also defined ∂u
∂t

∈ D ′(0, T ;X) by (9).

Let V is a Banach space separable and reflexive and K is a closed convex
set in V .

Theorem 3. We assume that K is a closed convex set unbounded in
V . Let A is a pseudo-monotone operator from K into V ′, and coercive in the
following sense:
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There exists v0 ∈ K such that

〈A(v), v − v0〉
‖v‖V

−→ +∞ as ‖v‖V −→ +∞, v ∈ K (10)

then, for f ∈ V ′, there exists u ∈ K such that

〈A(u), v − u〉 ≥ 〈f, v − u〉, ∀v ∈ K.

Proof. We note that A is pseudo - monotone from V into V ′ if satisfies the
following conditions:

First: A is bounded,
Second: as j −→ +∞, uj tending to u weakly in V and
lim sup〈A(uj), uj − u〉 ≤ 0, then,
lim inf〈A(uj), uj − v〉 ≥ 〈A(u), u − v〉, as j −→ +∞.
We give the following Theorem

Theorem 4. We assume that K is a convex closed bounded noempty.
Let A is a operator pseudo-monotone from K into V ′. Then for f ∈ V ′, there
exists u in K such that

〈A(u), v − u〉 ≥ 〈f, v − u〉, ∀v ∈ K.

The proof of the Theorem is in ([3], P. 245).
Let

BR = {v | v ∈ V, ‖v‖V ≤ R}, KR = K
⋂

BR,

since KR is a closed convex and bounded, then from Theorem 4, there exists
uR ∈ KR such that

〈A(uR), v − uR〉 ≥ 〈f, v − uR〉 ∀v ∈ KR, (11)

choosing R ≥ R0 such that ‖v0‖V ≤ R0. Then by taking v = v0 in (11) we
deduce from (10), that

‖uR‖V ≤ C

and uR is solution of (11), we have ‖uR‖ ≤ C and if choosing R > C, then uR
is solution of

〈A(u), v − u〉 ≥ 〈f, v − u〉, ∀v ∈ K.

indeed, we have ‖uR‖V ≤ C, then A(uR) remain in a bounded set of V ′ and
there exists a subsequence R −→ ∞ such that

uR −→ u weakly in V, A(uR) −→ χ weakly in V ′,
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since K is weakly closed, u ∈ K. We have

〈A(uR), uR − u〉 ≤ 〈f, uR − u〉

on R ≥ ‖u‖V = C, then

lim sup〈A(uR), uR − u〉 ≤ 0

and from the pseudo-monotone,

lim inf〈A(uR), uR − v〉 ≥ 〈A(u), u − v〉 (12)

and since

〈A(uR), uR − v〉 ≤ 〈f, uR − v〉 −→ 〈f, u− v〉 ∀v ∈ K,

we deduce from (12) that

〈A(u), u − v〉 ≤ 〈f, u− v〉 ∀v ∈ K,

then we have
〈A(u), v − u〉 ≥ 〈f, v − u〉

3. Main Results

3.1. Existence and Uniqueness of Solutions

Theorem 5. Assume that Ω be a bounded open. We give f, u0, u1 with

f ∈ L2(Q), (13)

u0 ∈ H1
0 (Ω), (14)

u1 ∈ L2(Ω). (15)

There exists a unique solution u satisfies

u ∈ L∞(0, T ;H1
0 (Ω)), (16)

∂u

∂t
∈ L∞(0, T ;L2(Ω)), (17)
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∂2u

∂t2
+ η

∂u

∂t
−∆u = f in Q, (18)

u(0) = u0, (19)

∂u

∂t
(0) = u1. (20)

Proof. Proof of the existence. The proof of this Theorem will be made in
three steps.

Step 1: The existence is proved by the Faedo - Galerkin method, in ([3]),

we take u′ = ∂u
∂t
, u′′ = ∂2u

∂t2
, since the space V = H1

0 (Ω) is a separable space.
We introduce a sequence of functions w1, · · · , wm, · · · , such that, wi ∈ H1

0 (Ω),
for any i = 1, 2, · · · ,m, · · · and for any m, w1, · · · , wm are linearly independent
elements of H1

0 (Ω), the finite linear combinations of wi are dense in the space
H1

0 (Ω).
We find an approximate solution um = um(t) of (18)− (19)− (20) as follows

um(t) = Σm
i=1gim(t)wi, (21)

where gim, are obtained by the conditions

{

(u′′m(t), wj) + η(u′m(t), wj) + a(um(t), wj) = (f(t), wj),
for j = 1, · · · ,m, (22)

where

a(u, v) = Σn
i=1

∫

Ω

∂u

∂xi

∂v

∂xi
dx (23)

the system (22) of linear ordinary differential equations is given with the initial
conditions, as m −→ +∞

um(0) = u0m, u0m = Σm
i=1αimwi −→ u0 in H

1
0 (Ω) (24)

u′m(0) = u1m, u1m = Σm
i=1βimwi −→ u1 in L

2(Ω) (25)

From the linearly independent of w1, · · · , wm, we have
det(wi, wj) 6= 0, i = 1, · · · ,m and j = 1, · · · ,m then from the general results
on the systems of differential equations, these results guarantees the existence
of a solution of (22)− (24)− (25) in the intervalle [0, t]. The following a priori
estimates show that t = T .
Step 2: We multiply (22) by g′jm, add these relations for
j = 1, · · · ,m, which gives

(u′′m(t), u′m(t)) + η(u′m(t), u′m(t)) + a(um(t), u′m(t)) =
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(f(t), u′m(t)) (26)

then

1

2

d

dt

∫

Ω
[(u′m(t))2 + a(um(t), um(t))]dx+ η

∫

Ω
(u′m(t))2dx =

(f(t), u′m(t)) (27)

then after an integration on t and using Cauchy-Schwarz inequality, we obtain

1

2
[‖u′m(t)‖2 + ‖um(t)‖2V ] + η

∫ t

0
‖u′m(σ)‖2dσ ≤

1

2
[‖u1m‖2 + ‖u0m‖2V ] +

∫ t

0
‖f(σ)‖‖u′m(σ)‖dσ (28)

then

1

2
[‖u′m(t)‖2 + ‖um(t)‖2V ] + η

∫ t

0
‖u′m(σ)‖2dσ ≤ C +

1

2

∫ t

0
‖f(σ)‖2dσ +

1

2

∫ t

0
‖u′m(σ)‖2dσ (29)

where C > 0 is independent of m from (13) we have

∫ T

0
‖f(σ)‖2dσ ≤ C

we conclude that

1

2
[‖u′m(t)‖2 + ‖um(t)‖2V ] + η

∫ t

0
‖u′m(σ)‖2dσ ≤

C +
1

2

∫ t

0
‖u′m(σ)‖2dσ (30)

we use the Lemma 1, we obtain

1

2
[‖u′m(t)‖2 + ‖um(t)‖2V ] + η

∫ t

0
‖u′m(σ)‖2dσ ≤ C (31)

then if η ≥ 0 we obtain

‖u′m(t)‖ ≤ C and ‖um‖V ≤ C (32)
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if η < 0 we conclude from (30) that

1

2
[‖u′m(t)‖2 + ‖um‖2V ] ≤ C + (

1

2
− η)

∫ t

0
‖u′m(σ)‖2dσ

we use the Lemma 1, we obtain

1

2
[‖u′m(t)‖2 + ‖um(t)‖2V ] ≤ C

then we obtain
‖u′m(t)‖ ≤ C and ‖um‖V ≤ C (33)

then we conclude that t = T , from (32) − (33) we obtain the result, letting
m −→ +∞,

um remain in a bounded set of L∞(0, T ;H1
0 (Ω))

and u′m remain in a bounded set of L∞(0, T ;L2(Ω)) (34)

Step 3: Pass to the limit
From Dunford-pettis theorem in ([16]) to show that the space L∞(0, T ;H1

0 (Ω)
be a given with dual L1(0, T ;H−1(Ω)) and the space L∞(0, T ;L2(Ω)) be a given
with dual L1(0, T ;L2(Ω)) by a consequence there exists a subsequence uµ of um
such that

uµ −→ u weakly star in L∞(0, T ;H1
0 (Ω)) (35)

and u′µ −→ u′ weakly star in L∞(0, T ;L2(Ω)) (36)

from (34) to show that um is a bounded in L2(0, T ;H1
0 (Ω)) and u

′
m is a bounded

in L2(0, T ;L2(Ω)). Then to show that um remain in a bounded set of H1(Q).
Then from Rellich-Kondrachoff theorem in ([4]) to show that

the injection of H1(Q) in L2(Q) is compact

we assume that subsequence uµ of um satisfies (35) − (36)

uµ −→ u strongly in L2(Ω) and almost everywhere

pass to the limit in (22) and using for m = µ, let j is a fixed and µ > j, then
from (22)

(u′′µ, wj) + η(u′µ, wj) + a(uµ, wj) = (f,wj) (37)

from (35) − (36) we have

a(uµ, wj) −→ a(u,wj) weakly star in L∞(0, T ;H1
0 (Ω)),
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(u′µ, wj) −→ (u′, wj) weakly star in L∞(0, T ;L2(Ω)),

and

(u′′µ, wj) =
d

dt
(u′µ, wj) −→ (u′′, wj) in D

′(0, T )

we conclude from (37) that

d2

dt2
(u,wj) + η

d

dt
(u,wj) + a(u,wj) = (f,wj) (38)

this for j is a fixed arbitrary. We multiply (38) by gjm, add these relation for
j = 1, · · · ,m we conclude that

d2

dt2
(u, v) + η

d

dt
(u, v) + a(u, v) = (f, v), ∀v ∈ V (39)

then u satisfies (18) and (17) − (16). For show that (19) is satisfying, from
(35) − (36) and the Lemma 2 we have, uµ(0) −→ u(0) weakly in L2(Ω), and
from (24), uµ(0) = u0µ −→ u0 in H1

0 (Ω), then we have (19). For show that (20)
is satisfying we prove the Lemma

Lemma 6. Let Q be a bounded open set in R
n
x×Rt, uµ and u are functions

in Lq(Q), 1 < q <∞, such that

‖uµ‖Lq(Q) ≤ C, uµ −→ u almost everywhere in Q

then uµ −→ u weakly in Lq(Q).

Proof. Suppose that on a measurable set E, we note that
1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞ are conjugated, 1

p
+ 1

q
= 1, let vµ be a sequence of

Lp(E), tending to v, weakly in Lp(E), as µ −→ +∞, if lim
∫

E
vµξdx =

∫

E
vξdx,

for any ξ ∈ Lp(E).
Let N is an increasing sequence tending to +∞, we introduce

EN = {(x, t) | (x, t) ∈ Q, |uµ(x, t)− u(x, t)| ≤ 1, for µ ≥ N}

EN are measurable set increases with N and measure(EN ) −→ measure(Q), as
N −→ +∞. Let ΦN the set of functions ϕ in Lq′

(Q), such that Lq′

(Q) denote
the conjugate space of Lq(Q),
1
q
+ 1

q′ = 1, with a support in EN and let Φ =
⋃

N−→+∞ΦN , Φ is dense in
Lq(Q). If we take ϕ ∈ Φ, then from Lebesgue dominated convergence theorem
we obtain

∫ T

0

∫

Ω
ϕ(x, t)(uµ(x, t)− u(x, t))dxdt −→ 0, as µ −→ +∞ (40)
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indeed, we have uµ and u are functions in Lq(Q), 1 < q < ∞, such that
‖uµ‖Lq(Q) ≤ C, uµ −→ u almost everywhere in Q, since
|ϕ(x, t)(uµ(x, t) − u(x, t))| ≤ |ϕ(x, t)|, and ϕ ∈ ΦN0

, we take µ ≥ N0, then
ϕ(x, t)(uµ(x, t) − u(x, t)) −→ 0 almost everywhere, as Φ is dense in Lq′

(Q),

then
∫ T

0

∫

Ω ϕ(x, t)uµ(x, t)dxdt −→
∫ T

0

∫

Ω ϕ(x, t)u(x, t)dxdt, as µ −→ +∞, then uµ −→ u weakly in Lq(Q).

From (40),

(u′′µ, wj) −→ (u′′, wj), weakly star in L∞(0, T ;L2(Ω))

then from Lemma 2 with X = R

(u′µ(0), wj) −→ (u′, wj) |t=0= (u′(0), wj)

and from (25),
(u′µ(0), wj) −→ (u1, wj),

then
(u′(0), wj) = (u1, wj),

for any j, then we have (20).

Remark 7. From (2) and (3), u = 0 on Σ, then the condition u = 0 on Σ
is satisfies in (16).
In ([4]) from (16) − (17) and Lemma 2, we obtain that u is continuous from
[0, T ] into L2(Ω) then (19) has a sense. To verify that (20) has a sense, using
the equation (18) can be written as

∂2u

∂t2
= f +∆u− η

∂u

∂t
(41)

since ∆ ∈ L (H1
0 (Ω),H

−1(Ω)), we have ∆u ∈ L∞(0, T ;H−1(Ω)) from (13) −
(17) we have f ∈ L2(0, T ;L2(Ω)), ∂u

∂t
∈ L∞(0, T ;L2(Ω)

from (41) we obtain that

∂2u

∂t2
∈ L2(0, T ;L2(Ω)) + L∞(0, T ;H−1(Ω) + L2(Ω))

then
∂2u

∂t2
∈ L2(0, T ;H−1(Ω) + L2(Ω))

since ∂u
∂t

∈ L∞(0, T ;L2(Ω)), and from Lemma 2, that ∂u
∂t

is continuous from
[0, T ] into H−1(Ω) + L2(Ω), such that (20) has a sense.
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Proof of the Uniqueness

Theorem 8. The equations defined by (18) − (19) − (20) in Theorem 5,
has a unique solution u.

Proof. Assume that u, v are two solutions of (18)− (19) − (20),
then w = u− v satisfies

∂2w

∂t2
+ η

∂w

∂t
−∆w = 0, (42)

w(0) = 0, w′(0) = 0, (43)

w ∈ L∞(0, T ;H1
0 (Ω)), (44)

w′ ∈ L∞(0, T ;L2(Ω)). (45)

by taking w′ = ∂w
∂t
, w′′ = ∂2w

∂t2

we multiply (42) by w′, we obtain that

(w′′, w′) + η(w′, w′)− (∆w,w′) = 0, (46)

by using integration by parts and (43), we obtain

d

dt
[‖w′(t)‖2 + ‖w(t)‖2V ] + 2η‖w′(t)‖2 = 0 (47)

integration from 0 to t and from (43) we obtain

‖w′(t)‖2 + ‖w(t)‖2V + 2η

∫ t

0
‖w′(σ)‖2dσ = 0 (48)

if η ≥ 0, we obtain that

‖w′(t)‖2 + ‖w(t)‖2V ≤ 0 (49)

and w(t) = 0, ∀t ∈ [0, T ]
if η < 0, we write

‖w′(t)‖2 + ‖w(t)‖2V ≤ −2η

∫ t

0
(‖w′(σ)‖2 + ‖w(σ)‖2V )dσ

using the Lemma 1, we obtain (49), then w(t) = 0, ∀t ∈ [0, T ].
To justify the previous conclusion we use Method in linear hyperbolic equations.
Let s ∈]0, T ], we introduce

ψ(t) =

{

−
∫ s

t
w(σ)dσ, t ≤ s;

0, t > s.
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and ψ(t) = w1(t) − w1(s) if t ≤ s such that w1(t) =
∫ t

0 w(σ)dσ. We multiply
(42) by ψ(t) we obtain

∫ s

0
(w′′, ψ)dt+ η

∫ s

0
(w′, ψ)dt−

∫ s

0
(∆w,ψ)dt = 0

by using integration by parts and (43), we obtain

−
∫ s

0
(w′, ψ′)dt+ η

∫ s

0
(w′, ψ)dt+

∫ s

0
a(w,ψ)dt = 0

then, since ψ′ = w and ψ(0) = −w1(s)

−1

2
‖w(s)‖2 − η

∫ s

0
‖ψ′‖2dt− 1

2
‖w1(s)‖2V = 0

then
1

2
‖w(s)‖2 + η

∫ s

0
‖ψ′‖2dt+ 1

2
‖w1(s)‖2V = 0

if η ≥ 0, we obtain
‖w(s)‖2 + ‖w1(s)‖2V ≤ 0, (50)

and w(t) = 0 for t ∈ [0, T ]
if η < 0, we write

‖w(s)‖2 + ‖w1(s)‖2V ≤ −2η

∫ s

0
(‖ψ′(t)‖2 + ‖w1(t)‖2V )dt

using the Lemma 1, we obtain (50), then w(t) = 0 for t ∈ [0, T ].

Remark 9. In the case of the uniqueness the sequence um of approximate
solutions converges to u.

3.2. A Regularity Result

Theorem 10. The hypotheses are those of theorem 5 with another

∂f

∂t
∈ L2(Q), (51)

u0 ∈ H1
0 (Ω)

⋂

H2(Ω), (52)

u1 ∈ H1
0 (Ω), (53)
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then there exists a unique solution u of (18) − (19) − (20) satisfies

u ∈ L∞(0, T ;H1
0 (Ω)

⋂

H2(Ω)), (54)

u′ ∈ L∞(0, T ;H1
0 (Ω)), (55)

u′′ ∈ L∞(0, T ;L2(Ω)). (56)

Proof. Proof of the Existence
The Proof of this Theorem will be made in two steps, the existence is proved
by the Faedo-Galerkin method, in ([3]).
From the approximate solution um of (22) − (24) − (25), we take wj , j =
1, 2, · · · ,m is a basis in the space H1

0 (Ω)
⋂

H2(Ω),
from (24) − (25) we assume that

u0m −→ u0 in H
1
0 (Ω)

⋂

H2(Ω), (57)

u1m −→ u1 in H
1
0 (Ω). (58)

We prove in step 1 an additional a priori estimate to show that the existence of
a solution with (55) − (56), and we prove (54) in step 2 by using the equation
(18).
Step 1: We deduce from (22) that

(u′′m(0) + ηu′m(0), wj) = (f(0) + ∆u0m, wj), j = 1, · · · ,m (59)

from (51) and Lemma 2, f(0) ∈ L2(Ω), and from (57)

‖∆u0m‖ = (

∫

Ω
(∆u0m)2dx)

1

2 < C,

we multiply (59) by g′′jm(0) and add these relations for j = 1, · · · ,m which gives

∫

Ω
(u′′m(0))2dx = (f(0) + ∆u0m, u

′′
m(0))− η(u′m(0), u′′m(0))

by using the Cauchy-Schwarz inequality, we obtain

∫

Ω
(u′′m(0))2dx ≤ [(

∫

Ω
(f(0))2dx)

1

2 + (

∫

Ω
(∆u0m)2dx)

1

2 +

η(

∫

Ω
(u′m(0))2dx)

1

2 ](

∫

Ω
(u′′m(0))2dx)

1

2
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then we conclude by using (57) − (58) and f(0) ∈ L2(Ω) that

(

∫

Ω
(u′′m(0))2dx)

1

2 ≤ C. (60)

by differentiating (22) with respect to t, we obtain

{

(u′′′m(t), wj) + η(u′′m(t), wj) + a(u′m(t), wj) = (f ′(t), wj)
for j = 1, · · · ,m, (61)

we multiply (61) by g′′jm(t), add these relations for j = 1, · · · ,m,
we obtain

(u′′′m(t), u′′m(t)) + η(u′′m(t), u′′m(t)) + a(u′m(t), u′′m(t)) = (f ′(t), u′′m(t))

then

1

2

d

dt

∫

Ω
[(u′′m(t))2 + ‖u′m(t)‖2V ]dx+ η

∫

Ω
(u′′m(t))2dx = (f ′(t), u′′m(t))

integrating from 0 to t and using Cauchy-Schwarz inequality we obtain

1

2

∫

Ω
[(u′′m(t))2 + ‖u′m(t)‖2V ]dx+ η

∫ t

0
(

∫

Ω
(u′′(σ))2dx)dσ ≤

1

2

∫

Ω
[(u′′m(0))2 + ‖u′m(0)‖2V ]dx+

∫ t

0
‖f ′(σ)‖‖u′′m(σ)‖dσ ≤

1

2

∫

Ω
[(u′′m(0))2 + ‖u′m(0)‖2V ]dx+

1

2

∫ t

0
(

∫

Ω
(f ′(σ))2dx)dσ +

1

2

∫ t

0
(

∫

Ω
(u′′m(σ))2dx)dσ

by using (51) − (58) − (60), we obtain

1

2
[‖u′′m(t)‖2 + ‖u′m‖2V ] + η

∫ t

0
(

∫

Ω
(u′′m(σ))2dx)dσ ≤

C +
1

2

∫ t

0
(

∫

Ω
(u′′m(σ))2dx)dσ (62)

we use the Lemma 1, we obtain

1

2

∫

Ω
[(u′′m(t))2 + ‖u′m(t)‖2V ]dx+ η

∫ t

0
(

∫

Ω
(u′′m(σ))2dx)dσ ≤ C (63)
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then if η ≥ 0 we obtain

‖u′m‖V ≤ C and ‖u′′m‖ ≤ C (64)

if η < 0 from (62) we obtain

1

2
[‖u′′m(t)‖2 + ‖u′m(t)‖2V ] ≤ C + (

1

2
− η)

∫ t

0
(

∫

Ω
(u′′m(σ))2dx)dσ (65)

we use the Lemma 1 we obtain

1

2
[‖u′′m(t)‖2 + ‖u′m‖2V ] ≤ C

then we obtain

‖u′m‖V ≤ C and ‖u′′m(t)‖ ≤ C (66)

then from (64) − (66) we obtain the result

u′m remain in a bounded set of L∞(0, T ;H1
0 (Ω)),

u′′m remain in a bounded set of L∞(0, T ;L2(Ω)).

Then there exists a subsequence uµ of um as in the proof of the existence
Theorem 5 such that, u satisfies (55)− (56), then we have u ∈ L∞(0, T ;H1

0 (Ω))
from the theorem 5, for proved (54), to verify that

u ∈ L∞(0, T ;H2(Ω)) (67)

Step 2: We prove (67).
We conclude from (18) that

∆u = u′′ + ηu′ − f (68)

from (13) and (51), f ∈ L∞(0, T ;L2(Ω)) and with (56) we conclude from (68)
that

∆u ∈ L∞(0, T ;L2(Ω))

put
∆u = h,

since ∆ : H1
0 (Ω) −→ H−1(Ω) is an isomorphism with continuous inverse G =

∆−1, and since u ∈ L∞(0, T ;H1
0 (Ω)) we have

u(t) = Gh(t) almost everywhere (69)
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in ([4], [6]) we have the theorems for regularity of solutions of linear elliptic
equations are given

G ∈ L (L2(Ω),H2(Ω)) (70)

then from (69) − (70), we obtain

u ∈ L∞(0, T ;H2(Ω)).

Proof of the Uniqueness

Theorem 11. The solution u in the theorem 10 is a unique.

Proof. Assume that u, v are two solutions given in the theorem 10, then
w = u− v satisfies

∂2w

∂t2
+ η

∂w

∂t
−∆w = 0 (71)

w(0) = 0, w′(0) = 0, (72)

w ∈ L∞(0, T ;H1
0 (Ω)

⋂

H2(Ω)), (73)

w′ ∈ L∞(0, T ;H1
0 (Ω)) (74)

w′′ ∈ L∞(0, T ;L2(Ω)) (75)

we multiply (71) by w′, we obtain

(w′′, w′) + η(w′, w′)− (∆w,w′) = 0

by integration by parts and (72), we obtain

1

2

d

dt

∫

Ω
[(w′(t))2 + ‖w(t)‖2V ]dx+ η

∫

Ω
(w′(t))2dx = 0

integration from 0 to t and from (72) we obtain

1

2

∫

Ω
[(w′(t))2 + ‖w(t)‖2V ]dx+ η

∫ t

0
(

∫

Ω
(w′(σ))2dx)dσ = 0

if η ≥ 0, we obtain that

∫

Ω
[(w′(t))2 + ‖w(t)‖2V ]dx ≤ 0, (76)
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then w(t) = 0, for t ∈ [0, T ]
if η < 0, we write

∫

Ω
[(w′(t))2 + ‖w(t)‖2V ]dx ≤ −2η

∫ t

0
(

∫

Ω
[(w′(σ))2 + ‖w(σ)‖2V ]dx)dσ

using the Lemma 1, we obtain (76), then w(t) = 0 for t ∈ [0, T ].
For justify the previous conclusion the uniqueness applying the same argument
in uniqueness Theorem 8, then the sequence um of approximate solutions con-
verges to u.

3.3. Semi Discretization and Variational inequalities

In ([3], P. 432), we apply semi-discretization in time, to establish the existence
and uniqueness of solution, then
we give the following Theorem.
Such that from (8) we have

V ⊂ H ≡ H ′ ⊂ V ′ (77)

and from (7), we have

−∆ ∈ L (V, V ′), 〈−∆v, v〉 ≥ α‖v‖2V , 0 ≤ α ≤ 1, v ∈ V. (78)

Theorem 12. We assume that (77) − (78) are satisfied.
Let K is a closed convex set in V . We give

f ∈ L2(0, T ;H), (79)

u0 ∈ K, (80)

u1 ∈ H. (81)

There exists a unique solution u, such that

u ∈ C ([0, T ];V )
⋂

C
1([0, T ];H). (82)

u(t) ∈ K, almost everywhere, u′(t) ∈ H. (83)

And in the cases 1.,2. We obtain the inequality

∫ T

0
〈u′′(t) + ηu′(t)−∆u(t)− f(t), v(t)− u(t)〉dt+
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‖v1 − u1‖2 +ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥ 0 (84)

∀v ∈ C ([0, T ];V ), v′ ∈ C ([0, T ];H), v′′ ∈ L2(0, T, V ′),
v(t) ∈ K, almost everywhere, v′(t) ∈ H.
And in the cases 2., 3. We obtain the inequality

∫ T

0
〈u′′(t) + ηu′(t)−∆u(t)− f(t), v(t) − u(t)〉dt+

ΣN−1
n=1 ‖vn+1 − un+1 − (vn − un)‖2 +

ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥ 0 (85)

∀v ∈ C ([0, T ];V ), v′ ∈ C ([0, T ];H), v′′ ∈ L2(0, T ;V ′),
v(t) ∈ K, almost everywhere, v′(t) ∈ H.
And in the cases 2.,4.,5. We obtain the inequality

∫ T

0
〈u′′(t) + ηu′(t)−∆u(t)− f(t), v(t) − u(t)〉dt+

(
1 + ηk

2
)‖v1 − u1‖2 +

(
1 + ηk

2
)ΣN−1

n=1 ‖vn+1 − un+1 − (vn − un)‖2 +

ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥ 0 (86)

∀v ∈ C ([0, T ];V ), v′ ∈ C ([0, T ];H), v′′ ∈ L2(0, T ;V ′),
v(t) ∈ K, almost everywhere, v′(t) ∈ H.

Proof. Semi-discretization in time We introduce

k = △t = T

N
(87)

N is an integer fixed in N and un an approximation to u at time nk. We
introduce

fn =
1

k

∫ (n+1)k

nk

f(σ)dσ, n ≥ 1; (88)

we take
u0 = u0 (89)

and we define un by







(u
n+1−2un+un−1

k2
+ η un+1−un

k
, v − un)+

〈−∆un − fn, v − un〉 ≥ 0
∀v ∈ K, ∀v′ ∈ H, un ∈ K, n = 1, · · · , N − 1.

(90)
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The system (90) is an elliptic variational inequality, has a unique solution.
Indeed, (90) is equivalent to, for any v ∈ K, v′ ∈ H

〈−∆un − (
2

k2
+
η

k
)un, v − un〉 ≥ (fn − (

1

k2
+
η

k
)un+1 − 1

k2
un−1, v − un),

then by applying the Theorem 3, to the operator

−∆− (
2

k2
+
η

k
)I.

Where I is the identity operator, then we prove that operator
−∆− ( 2

k2
+ η

k
)I is coercive, we have

〈−∆v, v0〉 = a(v, v0) = ΣN
i=1

∫

Ω
∂v
∂xi

∂v0
∂xi

dx, v0 ∈ K, and from (4)− (7) we obtain
that

〈−(∆ + (
2

k2
+
η

k
))v, v − v0〉 =

〈−∆v, v〉 − 〈−∆v, v0〉 − ((
2

k2
+
η

k
)v, v − v0) ≥

α‖v‖2V − a(v, v0)− ((
2

k2
+
η

k
)v, v − v0)

then for any v ∈ K

〈−(∆ + ( 2
k2

+ η
k
))v, v − v0〉

‖v‖V
−→ +∞

as ‖v‖V −→ +∞

and we prove that operator −∆− ( 2
k2

+ η
k
)I is pseudo monotone, first we prove

that operator is bounded then for any u, v ∈ K, from (5) we have

〈−∆u− (
2

k2
+
η

k
)u, v〉 = 〈−∆u, v〉 − (

2

k2
+
η

k
)(u, v) ≤

C‖u‖V ‖v‖V − (
2

k2
+
η

k
)(u, v) ≤ C‖u‖V ‖v‖V

then

〈−∆u− (
2

k2
+
η

k
)u, v〉 ≤ C‖u‖V ‖v‖V

then

‖ −∆− (
2

k2
+
η

k
)‖∗ ≤ C
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second if uj −→ u weakly in K, as j −→ +∞, then
lim(−∆− ( 2

k2
+ η

k
))(uj) = (−∆− ( 2

k2
+ η

k
))(u),

for any −∆− ( 2
k2

+ η
k
) ∈ V ′ since

lim sup〈(−∆− (
2

k2
+
η

k
))(uj), uj − v〉 =

lim inf〈(−∆− (
2

k2
+
η

k
))(uj), uj − v〉 =

〈(−∆ − (
2

k2
+
η

k
))(u), u − v〉

∀v ∈ K, then

lim inf〈(−∆− (
2

k2
+
η

k
))(uj), uj − v〉 ≥

〈(−∆ − (
2

k2
+
η

k
)(u), u − v〉

then by applying the Theorem 3, we deduce the system (90) has a unique
solution. We say that the system (90) is a semi-discrete approximation of the
inequalitys (84), (85), (86).
Proof of the Existence
We introduce

uk(t) = un in [nk, (n+ 1)k[, n = 0, · · · , N − 1 (91)

then we prove the Lemma

Lemma 13. We take k −→ 0, we have

uk remain in a bounded set of L∞(0, T ;V ),

u′k remain in a bounded set of L∞(0, T ;H). (92)

Proof. We refer to ([13]), ([3], P. 222), ([5]) for the proof
of Lemma 13.
we want to solve the initial-value problem such that η ∈ R

∂2u

∂t2
+ η

∂u

∂t
−∆u = f, on ]0, T [, (93)

u(0) = u0,
∂u

∂t
(0) = u1. (94)

Where f ∈ L2(0, T ;H), u0 ∈ K, u1 ∈ H.
Since the space V is a separable space and consider a sequence of linearly
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independent elements of V , w1, · · · , wk, · · · , which is total in V . Using the
Faedo- Galerkin method we define for each k an approximate solution uk of
(93) − (94)

uk(t) = Σk
i=1gik(t)wi, (95)

then

∂2

∂t2
(uk, wj) + η

∂

∂t
(uk, wj) + a(uk, wj) = (f,wj),

j = 1, · · · , k, (96)

uk(0) = u0k, (97)

u′k(0) = u1k. (98)

Where u0k is the projection in V of u0 on the space spanned by w1, · · · , wk,
and u1k is the projection in V of u1 on the space spanned by w1, · · · , wk.
Equations (95)−(96)−(97)−(98) are equivalent to a linear initial-value problem
for an ordinary k-dimensional differential equation. They possess a unique
solution defined for all time and in particular on [0, T ], the function uk is in
C ([0, T ];V ) and u′k ∈ C ([0, T ];V ),
u′′k is in L2(0, T ;V ).
A priori estimates are obtained by multiplying (96) by g′jk and summing these
relations for j = 1, · · · , k. We obtain

(u′′k, u
′
k) + η(u′k, u

′
k) + a(uk, u

′
k) = (f, u′k). (99)

d

dt
[‖u′k‖2 + a(uk, uk)] + 2η‖u′k‖2 = 2(f, u′k) ≤ ‖f‖2 + ‖u′k‖2. (100)

We use the Lemma 1, we obtain

uk remain in a bounded set of L∞(0, T ;V ),

u′k remain in a bounded set of L∞(0, T ;H).

Then we have (92).

Thus there exists a subsequence, remain denoted uk, and u, such that

u ∈ L∞(0, T ;V ), u′ ∈ L∞(0, T ;H), (101)

as k −→ +∞,
uk −→ u in L∞(0, T ;V ) weak-star,
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u′k −→ u′ in L∞(0, T ;H) weak-star .

Then passing to the limit in (95)− (96)− (97)− (98) we see that u is a solution
of (93)− (94) which satisfies (101).
To conclude the proof of existence it remains to show the continuity properties
u ∈ C ([0, T ];V ), u′ ∈ C ([0, T ];H).
We give the following Lemma

Lemma 14. Let X and Y be two Banach spaces such that

X ⊂ Y (102)

with a continuous injection.
If a function ϕ belongings to L∞(0, T ;X) and is weakly continuous with values
in Y , then ϕ is weakly continuous with values in X.

The proof of the Lemma 14 is in ([12]), and in
([14], Lemma 1.4, Chapter III).
It follows from the Lemma 14 and (101) that u is weakly continuous from [0, T ]
in V . Similarly, we infer from (93) that

u′′ = f − ηu′ +∆u

and u′′ ∈ L2(0, T ;V ′), since f ∈ L2(0, T ;H), u′ ∈ L∞(0, T ;H),
u ∈ L∞(0, T ;V ) which implies −∆u ∈ L∞(0, T ;V ′).
We give the following Lemma

Lemma 15. Let X be a given Banach space with dual X ′ and let u and g
be two functions belonging to L1(0, T ;X). Then the following three conditions
are equivalent

(i) u is almost everywhere equal to a primitive function g, there exists ξ ∈ X

such that

u(t) = ξ +

∫ t

0
g(s)ds, for almost everywhere t ∈ [0, T ]. (103)

(ii) For every test function ϕ ∈ D(]0, T [),

∫ T

0
u(t)ϕ′(t)dt = −

∫ T

0
g(t)ϕ(t)dt (104)

(iii) For each ξ ∈ X ′,
d

dt
〈u, ξ〉 = 〈g, ξ〉 (105)
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in the scalar distribution sense on ]0, T [.
If (i)-(ii)-(iii) are satisfied we say that g is the X-valued distribution derivative
of u, and u is almost everywhere equal to a continuous function from [0, T ] into
X.

The proof of the Lemma 15 is in ([14], Lemma 1.1, Chapter III).
From Lemma 15, then shows that u is continuous from [0, T ] in V ′, Lemma 14
and (101) imply that u′ is weakly continuous from [0, T ] in H.
We give the following Lemma

Lemma 16. We assume that w is such that

w ∈ L2(0, T ;V ), w′ ∈ L2(0, T ;H), (106)

and
w′′ −∆w ∈ L2(0, T ;H). (107)

Then, after modification on a set of measure zero, u is continuous from [0, T ]
into V , u′ is continuous from [0, T ] into H and, in the sense of distributions on
]0, T [,

(w′′ −∆w,w′) =
1

2

d

dt
{‖w′‖2 + a(w,w)}. (108)

The proof of the Lemma 16 is in ([13], P.79).
We deduce from Lemma 16 that u satisfies an equation similar to (100), namely

d

dt
[‖u′‖2 + a(u, u)] + 2η‖u′‖2 = 2(f, u′)

This shows that the function

t 7−→ ‖u′(t)‖2 + a(u(t), u(t))

is continuous on [0, T ]. In conjunction with the above properties of weak con-
tinuity, we conclude that u ∈ C ([0, T ];V ) and
u′ ∈ C ([0, T ];H), then we have (82)

u ∈ C ([0, T ];V )
⋂

C
1([0, T ];H)

For show that (83) we have if the set K is a closed and convex of functions
v ∈ C ([0, T ];V ) such that v(t) ∈ K almost everywhere, then we have
uk ∈ K for any k and since K is weakly closed in C ([0, T ];V ), we have u ∈ K.

And from (82) we have u′(t) ∈ H.
For show that (84), (85), (86), we consider the function v satisfies

v ∈ C
2([0, T ];V ), v(t) ∈ K, v′(t) ∈ H, for any t ∈ [0, T ] (109)
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we put

vn = v(nk), n = 0, · · · , N − 1,

vk =≪ step function defined by vk(t) = vn in ]nk, (n+ 1)k[≫
ṽk =≪ piecewise linear function, continuous in [0, T ]

such that

ṽk(nk) = vn−1, n = 1, 2, · · · and ṽk(0) = v0 ≫ .

We note that

∫ T

0
(
d2ṽk

dt2
+ η

dṽk

dt
, vk − uk)dt =

ΣN−1
n=0

∫ (n+1)k

nk

(
d2ṽk

dt2
+ η

dṽk

dt
, vk − uk)dt =

ΣN−1
n=1 ((v

n+1 − 2vn + vn−1) + η(vn+1 − vn), vn − un), (110)

and that
∫ T

0
〈−∆uk, vk − uk〉dt = k2ΣN−1

n=0 〈−∆un, vn − un〉. (111)

We define
fk = fn in [nk, (n+ 1)k[, n = 0, · · · , N − 1, (112)

we have
∫ T

0
〈fk, vk − uk〉dt = k2ΣN−1

n=0 〈fn, vn − un〉. (113)

We take v = vn in the system (90), and we multiply by k2 we obtain that

((un+1 − 2un + un−1) + ηk(un+1 − un), vn − un) +

k2〈−∆un − fn, vn − un〉 ≥ 0, (114)

then

((vn+1 − 2vn + vn−1) + ηk(vn+1 − vn), vn − un) +

k2〈−∆un − fn, vn − un〉 =
((un+1 − 2un + un−1) + ηk(un+1 − un), vn − un) +

k2〈−∆un − fn, vn − un〉+
1 + ηk

2
[‖vn+1 − un+1‖2 − ‖vn − un‖2 −

‖vn+1 − un+1 − (vn − un)‖2] +
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1

2
[‖vn−1 − un−1‖2 − ‖vn − un‖2 −

‖vn−1 − un−1 − (vn − un)‖2] (115)

From the properties of the norm in L2(Ω), we have the inequality

‖vn+1 − un+1 − (vn − un)‖2 ≥ ‖vn+1 − un+1‖2 − ‖vn − un‖2 (116)

if we have the case 1.: ‖vn+1 − un+1‖2 − ‖vn − un‖2 < 0,
and 1+ηk

2 < 0
by using the case 1., on the member

1 + ηk

2
[‖vn+1 − un+1‖2 − ‖vn − un‖2 − ‖vn+1 − un+1 − (vn − un)‖2]

of the equality (115) and using the inequality (116), we obtain the inequality

1 + ηk

2
[‖vn+1 − un+1‖2 − ‖vn − un‖2 −

‖vn+1 − un+1 − (vn − un)‖2] ≥
‖vn+1 − un+1‖2 − ‖vn − un‖2 (117)

if we have the case 2.:
‖vn−1 − un−1‖2 − ‖vn − un‖2 < 0 or ‖vn−1 − un−1‖2 − ‖vn − un‖2 > 0
by using the case 2., on the member

1

2
[‖vn−1 − un−1‖2 − ‖vn − un‖2 − ‖vn−1 − un−1 − (vn − un)‖2]

of the equality (115) and using the inequality (116), we obtain the inequality

1

2
[‖vn−1 − un−1‖2 − ‖vn − un‖2 −

‖vn−1 − un−1 − (vn − un)‖2] ≥
−‖vn−1 − un−1 − (vn − un)‖2 (118)

by using the inequalitys (114)− (117)− (118), on the equality (115) we obtain

((vn+1 − 2vn + vn−1) + ηk(vn+1 − vn), vn − un) +

k2〈−∆un − fn, vn − un〉 ≥
‖vn+1 − un+1‖2 − ‖vn − un‖2 −

‖vn−1 − un−1 − (vn − un)‖2 (119)
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summing to n, we deduce

ΣN−1
n=1 [((v

n+1 − 2vn + vn−1) + ηk(vn+1 − vn), vn − un) +

k2〈−∆un − fn, vn − un〉] ≥
‖vN − uN‖2 − ‖v1 − u1‖2 −

ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥

−‖v1 − u1‖2 −
ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 (120)

with (110) − (111) − (113), we conclude of (120) the inequality
∫ T

0
(
d2ṽk

dt2
+ η

dṽk

dt
, vk − uk)dt+

∫ T

0
〈−∆uk − fk, vk − uk〉dt− k2〈−∆u0, v0 − u0〉+

k2〈f0, v0 − u0〉+ ‖v1 − u1‖2 +
ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥ 0 (121)

as k −→ 0, d
2ṽk
dt2

−→ v′′ strongly in L2(0, T ;V ′), and dṽk
dt

−→ v′

strongly in C ([0, T ];H), vk −→ v strongly in C ([0, T ];V ),
fk −→ f in L2(0, T ;H) and since −∆ pseudo-monotone, we have as k −→ 0

lim inf

∫ T

0
〈−∆uk, uk〉dt ≥

∫ T

0
〈−∆u, u〉dt,

and since k2f0 −→ 0 in H as k −→ 0, we conclude of (121) that
∫ T

0
[(v′′ + ηv′, v − u) + 〈−∆u− f, v − u〉]dt+ ‖v1 − u1‖2 +

ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥ 0 (122)

for any v satisfies (109).
if v is given as in the inequality (84), there exists vj satisfies the conditions
(109) and such that vj −→ v weakly in C ([0, T ];V ), v′j −→ v′ weak-star in

C ([0, T ];H), v′′j −→ v′′ in L2(0, T ;V ′).
We take v = vj in (122) and pass to the limit, we conclude that (84).
If we have the case 3.:
‖vn+1 − un+1‖2 − ‖vn − un‖2 > 0 and 1+ηk

2 < 0
by using the case 3., on the member

1 + ηk

2
[‖vn+1 − un+1‖2 − ‖vn − un‖2 − ‖vn+1 − un+1 − (vn − un)‖2]
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of the equality (115) and using the inequality (116), we obtain the inequality

1 + ηk

2
[‖vn+1 − un+1‖2 − ‖vn − un‖2 −

‖vn+1 − un+1 − (vn − un)‖2] ≥
−‖vn+1 − un+1 − (vn − un)‖2 (123)

by using the inequalitys (114) − (123) − (118) on the equality (115) we obtain

((vn+1 − 2vn + vn−1) + ηk(vn+1 − vn), vn − un) +

k2〈−∆un − fn, vn − un〉 ≥
−‖vn+1 − un+1 − (vn − un)‖2 − ‖vn−1 − un−1 − (vn − un)‖2 (124)

summing to n, we deduce

ΣN−1
n=1 [((v

n+1 − 2vn + vn−1) + ηk(vn+1 − vn), vn − un) +

k2〈−∆un − fn, vn − un〉] ≥
−ΣN−1

n=1 ‖vn+1 − un+1 − (vn − un)‖2 −
ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 (125)

with (110) − (111) − (113), we conclude of (125) the inequality

∫ T

0
(
d2ṽk

dt2
+ η

dṽk

dt
, vk − uk)dt+

∫ T

0
〈−∆uk − fk, vk − uk〉dt−

k2〈−∆u0, v0 − u0〉+ k2〈f0, v0 − u0〉+
ΣN−1
n=1 ‖vn+1 − un+1 − (vn − un)‖2 +

ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥ 0 (126)

as k −→ 0, d
2ṽk
dt2

−→ v′′ strongly in L2(0, T ;V ′), and dṽk
dt

−→ v′

strongly in C ([0, T ];H), vk −→ v strongly in C ([0, T ];V ),
fk −→ f in L2(0, T,H) and since −∆ pseudo-monotone, we have as k −→ 0

lim inf

∫ T

0
〈−∆uk, uk〉dt ≥

∫ T

0
〈−∆u, u〉dt,

and since k2f0 −→ 0 in H as k −→ 0, we conclude of (126) that

∫ T

0
[(v′′ + ηv′, v − u) + 〈−∆u− f, v − u〉]dt+
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ΣN−1
n=1 ‖vn+1 − un+1 − (vn − un)‖2 +

ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥ 0 (127)

for any v satisfies (109).
If v is given as in the inequality (85) there exists vj satisfies the conditions
(109) and such that vj −→ v weakly in C ([0, T ];V ), v′j −→ v′ weak-star in

C ([0, T ];H), v′′j −→ v′′ in L2(0, T ;V ′).
We take v = vj in (127) and pass to the limit, we conclude that (85).
If we have the case 4.:
‖vn+1 − un+1‖2 − ‖vn − un‖2 < 0 and 1+ηk

2 > 0
and the case 5.:
‖vn+1 − un+1‖2 − ‖vn − un‖2 > 0 and 1+ηk

2 > 0
in the cases 4., 5., we use the inequalitys (114)− (118) on the equality (115)
we obtain the inequality

((vn+1 − 2vn + vn−1) + ηk(vn+1 − vn), vn − un) +

k2〈−∆un − fn, vn − un〉 ≥
1 + ηk

2
[‖vn+1 − un+1‖2 − ‖vn − un‖2 −

‖vn+1 − un+1 − (vn − un)‖2]− ‖vn−1 − un−1 − (vn − un)‖2 (128)

summing to n, we deduce

ΣN−1
n=1 [((v

n+1 − 2vn + vn−1) + ηk(vn+1 − vn), vn − un) +

k2〈−∆un − fn, vn − un〉] ≥
1 + ηk

2
[‖vN − uN‖2 − ‖v1 − u1‖2 −

ΣN−1
n=1 ‖vn+1 − un+1 − (vn − un)‖2]−

ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥

1 + ηk

2
[−‖v1 − u1‖2 −

ΣN−1
n=1 ‖vn+1 − un+1 − (vn − un)‖2]−
ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 (129)

with (110) − (111) − (113), we conclude of (129) the inequality

∫ T

0
(
d2ṽk

dt2
+ η

dṽk

dt
, vk − uk)dt+

∫ T

0
〈−∆uk − fk, vk − uk〉dt− k2〈−∆u0, v0 − u0〉+
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k2〈f0, v0 − u0〉+ (
1 + ηk

2
)‖v1 − u1‖2 +

(
1 + ηk

2
)ΣN−1

n=1 ‖vn+1 − un+1 − (vn − un)‖2 +

ΣN−1
n=1 ‖vn−1 − un−1 − (vn − un)‖2 ≥ 0 (130)

as k −→ 0, d
2ṽk
dt2

−→ v′′ strongly in L2(0, T ;V ′), and
dṽk
dt

−→ v′ strongly in C ([0, T ];H), vk −→ v strongly in
C ([0, T ];V ), fk −→ f in L2(0, T ;H)
and since −∆ pseudo-monotone, we have as k −→ 0

lim inf

∫ T

0
〈−∆uk, uk〉dt ≥

∫ T

0
〈−∆u, u〉dt,

and since k2f0 −→ 0 in H as k −→ 0, we conclude of (130) that

∫ T

0
[(v′′ + ηv′, v − u) + 〈−∆u− f, v − u〉]dt+

(
1 + ηk

2
)‖v1 − u1‖2 +

(
1 + ηk

2
)ΣN−1

n=0 ‖vn+1 − un+1 − (vn − un)‖2 +

ΣN−1
n=0 ‖vn−1 − un−1 − (vn − un)‖2 ≥ 0 (131)

for any v satisfies (109).
If v is given as in the inequality (86) there exists vj satisfies the conditions
(109) and such that vj −→ v weakly in C ([0, T ];V ), v′j −→ v′ weak-star in

C ([0, T ];H), v′′j −→ v′′ in L2(0, T ;V ′).
We take v = vj in (131) and pass to the limit, we conclude that (86).

Proof of the Uniqueness
Regularity parabolic and variational inequalities hyperbolic
We approach parabolic equations by elliptic equations the following step is to
approach hyperbolic equations by parabolic equations, this is the regularity
parabolic method, that allows us to proved the Uniqueness. We apply this
method to the evolution inequalities of type hyperbolic or related to operators
well-posed of a sense of Petrowski.
Hypotheses
Let V , H are Hilbert spaces with

V ⊂ H, V is dense in H, V −→ H, continuous. (132)
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From (8), we have V ⊂ H ≡ H ′ ⊂ V ′.
Put, for simplicity

L2(0, T ;V ) = L2(V ), L2(0, T ;H) = L2(H),

L2(0, T ;V ′) = L2(V ′). (133)

And put

V = L2(0, T ;V × V ) = L2(V )× L2(V ),

H = L2(0, T ;V ×H) = L2(V )× L2(H). (134)

Identifying H to its dual H ′, we have

V ⊂ H ≡ H
′ ⊂ V

′,

such that V
′ = L2(V )× L2(V ′). (135)

Operator A = −∆
We give A = −∆ with

−∆ ∈ L (V, V ′), (−∆)∗ = −∆, (136)

and there exists c, α such that

〈−∆v, v〉 + c‖v‖2 ≥ α‖v‖2V , c > 0, α > 0, ∀v ∈ V (137)

The scalar product on V is

(u, v)V = ((−∆+ c)u, v), u, v ∈ V. (138)

Operator −∆ on L2(V )
We define the operator −∆ from L2(V ) −→ L2(V ′) is given by

(−∆v)(t) = −∆(v(t)) almost everywhere. (139)

Operator A .
We give k > 0, we define

A =

(

kI −I
−∆ kI

)

, A ∈ L (V ,V ′). (140)

If v = {v1, v2} ∈ V , then

A v = {kv1 − v2, −∆v1 + kv2} ∈ V
′.
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The scalar product on V is given by (138), the scalar product in H is given by

(u, v) =

∫ T

0
[(u1, v1)V + (u2, v2)]dt

then

〈A v, v〉 =
∫ T

0
[(kv1 − v2, v1)V + 〈−∆v1 + kv2, v2〉]dt =

∫ T

0
[k((−∆+ c)v1, v1)− ((−∆+ c)v2, v1) +

〈−∆v1, v2〉+ k(v2, v2)]dt ≥
∫ T

0
[kα‖v1‖2V + k‖v2‖2 − c‖v1‖‖v2‖]dt

but
‖v‖ ≤ d‖v‖V , ∀v ∈ V, d > 0, (141)

then we conclude that if

k >
cd

2
√
α

(142)

then

there exists α0 > 0 such that

〈A v, v〉 ≥ α0‖v‖2V , ∀v ∈ V . (143)

The semigroups G(s) and g(s)
We give the semigroup G(s) in L2(V ), L2(H) and L2(V ′).
G(s) is a semigroup of contractions in L2(H).
We denote by −Λ is the infinitesimal generator of G(s), and
D(Λ;L2(H)) is the domain of Λ in L2(H). We can associate to G(s) the
semigroup g(s) in V , H , V ′, is given by

g(s) =

(

G(s) 0
0 G(s)

)

(144)

and we denote by −L is the infinitesimal generator of g(s), is given by

L =

(

Λ 0
0 Λ

)

(145)

with the domain

D(L;H ) = D(Λ;L2(V ))×D(Λ;L2(H)). (146)
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The convexs Ki

We give the convexs Ki, i = 1, 2 with

the set Ki, is a convex closed of L2(V ), 0 ∈ Ki, i = 1, 2 (147)

and we assume

there exists σ > 0 and w0 ∈ L2(V ) such that

σK2 + w0 ⊂ K1. (148)

Remark 17. In the applications, using the set K1 = L2(V ), such that
(148) is satisfying for any K2.

Compatibility
Perform the following hypotheses

G(s)(−∆)(v) = −∆G(s)v, ∀s ≥ 0, ∀v ∈ L2(V ), (149)

G(s)Ki ⊂ Ki, ∀s ≥ 0, i = 1, 2, (150)

there exists ρ > 0 such that, ∀s ≥ 0, ∀v ∈ Ki, i = 1, 2,

G(s)v +G∗(s)v −G∗(s)G(s)v + (ρ− 1)v ∈ ρKi. (151)

Such that G∗(s) is the adjoint semigroup of G(s).
We give the following Theorem

Theorem 18. We assume that −∆ is given with (136) − (137) and A is
given by (140) with (142). We assume that (147)− (148)− (149)− (150)− (151)
are satisfied. With another

∫ T

0
((−∆+ c)Λv1, v1)dt ≥ 0, ∀v1 ∈ D(Λ;L2(V )). (152)

Let f ∈ D(Λ;L2(H)) and put F = {0, f} ∈ H .
Then there exists a unique function u satisfies

u ∈ K1 × K2, u ∈ D(L;K ), and (153)

(Lu, v − u) + 〈A u, v − u〉 ≥ (F, v − u), ∀v ∈ K . (154)

The proof of the Theorem is in ([3], P. 349).
From the proof of the Theorem 18 we give the following remarks
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Remark 19. The variational inequality (154) is not of type parabolic
because A is restrict to V is not coercive on V , but is only coercive on H ,
this is the situation typical of hyperbolic operator or well-posed of a sense of
Petrowski.

Remark 20. Before we give applications expounding (154), since K =
K1 × K2, then from (154) we have the inequalitys

u1 ∈ D(Λ;L2(V )), u1 ∈ K1,
∫ T

0
[(Λu1, v1 − u1)V + (ku1 − u2, v1 − u1)V ]dt ≥ 0,

∀v1 ∈ K1, (155)

u2 ∈ D(Λ;L2(H))
⋂

L2(V ), u2 ∈ K2,
∫ T

0
[(Λu2, v2 − u2) + 〈−∆u1 + ku2, v2 − u2〉]dt ≥

∫ T

0
(f, v2 − u2)dt, ∀v2 ∈ K2. (156)

In particular, K1 = L2(V ) then from (155) we deduce the equation

Λu1 + ku1 − u2 = 0. (157)

Remark 21. Third a priori estimate in the proof of the Theorem 18 is
not satisfying if

K2 is bounded in L2(V ), (158)

then (148) is not utility.

Remark 22. Since A is given by (140), but with k = 0 we have

A =

(

0 −I
−∆ 0

)

(159)

and perform the following hypothese : K1 = L2(V ), K2 is bounded in L2(V )
and if uj ∈ D(Λ;L2(V )) and (Λ + ǫ)vj is remain in bounded of L2(V ), then vj
is remain in a bounded set of L2(V ), for any j, as j −→ 0.
In these conditions, the Theorem 18 is also satisfying.
Indeed, by taking

B =

(

I 0
0 −∆+ c

)

(160)
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such that

〈(A + ǫB)v, v〉 = ǫ〈Bv, v〉 ≥ ǫ‖v‖2V ,

then there exists uǫ in K1 × K2 and D(L;V ) such that there exists

(Luǫ, v − uǫ) + 〈(A + ǫB)uǫ, v − uǫ〉 ≥ (F, v − uǫ), ∀v ∈ K ,

then

((−∆+ c)(Λuǫ1 − uǫ2 + ǫuǫ1), v1 − uǫ1) ≥ 0,∀v1 ∈ L2(V )

and then

(Λ + ǫ)uǫ1 = uǫ2. (161)

But uǫ2 ∈ K2 bounded in L2(V ) and then uǫ1 is remain in a bounded set of
L2(V ) and bounded of D(Λ, L2(V )).
Then we have the results of first and third a priori estimate in the proof of the
Theorem 18, second a priori estimate is unchanged.

Remark 23. From the proof of Theorem 18 can be replaced The hypothe-
ses (150) − (151) by the following hypotheses respectively,

there exists β ∈ R, such that ∀s ≥ 0, eβsG(s)Ki ⊂ Ki,

i = 1, 2, (162)

there exists ρ > 0, such that, ∀s ≥ 0, ∀v ∈ Ki, i = 1, 2,

eβsG(s)v + e−βsG∗(s)v = G∗(s)G(s)v + (ρ− 1)v ∈ ρKi. (163)

First application
From the Theorem 18 we prove as application the following Theorem.

Theorem 24. We give the function f = f(x, t), with

f,
∂f

∂t
∈ L2(Q), f(x, 0) = 0. (164)

There exists a unique function u satisfies

u,
∂u

∂xi
,
∂u

∂t
,
∂2u

∂xi∂t
,
∂2u

∂t2
∈ L2(Q), i = 1, · · · , n, (165)

∂2u

∂t2
−∆u = f, in Q, (166)
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u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, on Ω, (167)

∂u

∂t
≥ 0 on Σ,

∂u

∂n
≥ 0 on Σ,

∂u

∂t
× ∂u

∂n
= 0, on Σ. (168)

Such that ∂
∂n

= normal derivative to ∂Ω, directed on the exterior of Ω. From

(165), ∆u = ∂2u
∂t2

− f ∈ L2(Q), such that ∂u
∂n

has a sense from ([4]).

Proof. We apply the Theorem 18 in the following conditions

V = H1(Ω),

(−∆u, v) = Σn
i=1

∫

Ω

∂u

∂xi

∂v

∂xi
dx,

K1 = L2(V ) = L2(0, T ;V ),

K2 = {v | v ∈ L2(V ), v ≥ 0, almost everywhere on Σ},

G(s)ϕ(t) =

{

ϕ(t− s) if t ≥ s,

0, if t < s.

Here the conditions of the Theorem 18 are satisfied, choosing k > 0. The
operator Λ is Λ = ∂

∂t
, with domain the null functions for t = 0, here by using

(157), then we have the existence and uniqueness of the couple u1, u2 with

u1 ∈ D(Λ;L2(V )), such that,

u1 ∈ L2(V ), u′1 ∈ L2(V ), u1(0) = 0, (169)

u2 ∈ D(Λ;L2(H)), u2 ∈ K2, (170)

u′1 + ku1 − u2 = 0, (171)
∫ T

0
(u′2 + (−∆)u1 + ku2 − f, v2 − u2)dt ≥ 0,

∀v2 ∈ K2. (172)

As K2 is cone of summit the origin, (172) is equivalent to

∫ T

0
(u′2 + (−∆)u1 + ku2 − f, v2)dt ≥ 0
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∀v2 ∈ K2, with

∫ T

0
(u′2 + (−∆)u1 + ku2 − f, v2)dt = 0,

if v2 = u2. (173)

Using the definition of K2, we conclude that

u′2 −∆u1 + ku2 = f, in Q. (174)

If we multiplying by v2 and integration by parts, we deduce of
(174) that

∫

Σ

∂u1

∂n
v2 dΣ =

∫ T

0
(u′2 + (−∆)u1 + ku2 − f, v2)dt (175)

and then

∫

Σ

∂u1

∂n
v2 dΣ ≥ 0, ∀v2 ∈ K2,

with,

∫

Σ

∂u1

∂n
v2 dΣ = 0, if v2 = u2, (176)

then
∂u1

∂n
≥ 0, u2

∂u1

∂n
= 0. (177)

Then put

wi = ektui, i = 1, 2.

We conclude of (171) and (176) that

w′
1 − w2 = 0,

w′
2 −∆w1 = ektf = f∗,

w2 ≥ 0, on Σ,
∂w1

∂n
= 0, on Σ,

w2
∂w1

∂n
= 0, on Σ. (178)

Then u = w1 satisfying the conditions of Theorem 24 , with f is replaced by
f∗.
As we have equivalent of the research of u, of {w1, w2} and {u1, u2} we have
further the uniqueness.
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Second application
We consider the problem with periodic solutions in t of inequality of type (166)−
(168). We take that the change wi = ektui, i = 1, 2, exterminate the periodicity
in t then we will verify this.
We give the following Theorem as application on the Theorem 18 and the
Theorem 24

Theorem 25. We give the function f = f(x, t), with

f,
∂f

∂t
∈ L2(Q), f(x, 0) = f(x, T ), x ∈ Ω. (179)

Let k = η > 0.
There exists a unique function u, satisfies (165) and

∂2u

∂t2
+ k

∂u

∂t
−∆u = f, in Q, (180)

u(x, 0) = u(x, T ),

∂u

∂t
(x, 0) =

∂u

∂t
(x, T ), x ∈ Ω, (181)

and (168).

Proof. Applying the Theorem 18 with the same hypotheses of the Theorem
24, but the semigroup G(s) is given by

G(s)ϕ(t) =

{

ϕ(t− s+ T ), if t ≤ s,

ϕ(t− s), if t ≥ s.

We obtain the existence and uniqueness of the couple {u1, u2} with

u1 ∈ D(Λ;L2(V )), such that u1 ∈ L2(V ), u′1 ∈ L2(V ),

u1(x, 0) = u1(x, T ), u2 ∈ D(Λ;L2(H)), u2 ∈ K2, (182)

and (171) − (172). Then interpret (172) as in the Theorem 24 and that u =
u1 satisfying the conditions of the Theorem 24, as we have equivalent of the
research of u, of {u1, u2} we have further the uniqueness.
Then we obtain the Uniqueness in the Theorem 12 when η > 0.

To illustrate our results we consider the following example.
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3.4. An Example

We consider the initial - boundary value problem























∂2u
∂t2

+ η ∂u
∂t

− ∂2u
∂x2 = f(x, t),

x ∈]0, 1[, t ∈]0, T [,
u(0, t) = u(1, t) = 0, t ∈]0, T [,

u(x, 0) = 2 sinπx = u0(x), x ∈]0, 1[,
∂u
∂t
(x, 0) = − sin 2πx = u1(x), x ∈]0, 1[.

(183)

Where η > 0, and f(x, t) = −2ηπ(sin πx sinπt+ 1
2π sin 2πx cos 2πt)

the unique solution of (183) is given by

u(x, t) = 2 sinπx cos πt− 1

2π
sin 2πx sin 2πt (184)

For find the unique numerical solution v, the way we derive the finite difference
scheme for (183) then to replace the derivatives involved in (183) by finite
differences. But for (183) we have to approximate both the space and the time
derivatives.
Let n ≥ 1 be a given integer, the grid spacing in the x - direction is △x = 1

n+1 .
The grid points are xj = j △ x for j = 0, 1, · · · , n+ 1.
The discrete time levels are given by tm = m△ t for integers m ≥ 0, where
△t > 0 is the time step.
The grid function v, with vmj = v(xj , tm), approximates u.
Then we define the difference scheme

vm+1
j − 2vmj + vm−1

j

(△t)2 + η
vm+1
j − vmj

△t −

vmj+1 − 2vmj + vmj−1

(△x)2 = f(xj , tm) (185)

for j = 1, 2, · · · , n and for m ≥ 1. We require the discrete solution to satisfy
the boundary conditions in (183),

vm0 = vmn+1 = 0 for, m ≥ 0.

If {vmj }nj=1 and {vm−1
j }nj=1 are known, then the solutions {vm+1

j=1 }nj=1 can be
computed from (185). We need to know v at the first two time levels. We have

v0j = u0(xj) j = 1, 2, · · · , n. (186)



294 H. Bennour, M.S. Said

to obtain approximation v1j for u(x,△t) we use a Taylor expansion with respect
to time to obtain

u(x,△t) = u(x, 0) + (△t)∂u
∂t

(x, 0) +
(△t)2
2

∂2u

∂t2
(x, 0) +O((△t)3)

u(x,△t) = u0(x) + (△t)u1(x) +
(△t)2
2

u′′0(x) +O((△t)3).

Since
∂2u

∂t2
(x, 0) =

∂2u

∂x2
(x, 0) = u′′0(x).

Then, we have the following approximation v1j for u(xj ,△t)

v1j = v0j + (△t)u1(xj) +
(△t)2
2(△x)2 (v

0
j−1 − 2v0j − v0j+1). (187)

To write (185) in a more compact form, we let vm ∈ R
n be the vector vm =

(vm1 , v
m
2 , · · · , vmn )τ , τ = transferred, and A ∈ R

n,n the tridiagonal matrix

A =
1

(△x)2



















2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2



















(188)

then (185) can be written for m ≥ 1,

vm+1 = (
2 + η△ t

1 + η△ t
I − (△t)2

1 + η△ t
A)vm −

1

1 + η△ t
vm−1 + fm (189)

where I ∈ R
n,n, is the identity matrix, and fm = (fm1 , f

m
2 , · · · , fmn )τ with

components given by

fmj = f(xj, tm) = −2ηπ(△t)2
1 + η△ t

(sin πxj sinπtm +

1

2π
sin 2πxj cos 2πtm)

for j = 1, 2, · · · , n and m ≥ 1, where the initial approximation v0 and v1 are
determined by (186) and (187).
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