THE GENERAL WEIERSTRASS n-SEMIGROUP OF A NON-CLASSICAL CURVE

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: We study the Weierstrass semigroup of n general points of a non-classical curve of genus $g < p^2$, where p is the characteristic of the base field.

AMS Subject Classification: 14H55
Key Words: Weierstrass n-semigroup, smooth curve, semigroup of non-gaps, non-classical curve

1. General n-Semigroup

Let X be a smooth and connected projective curve of genus $g \geq 4$ defined over an algebraically closed field \mathbb{K} with $\text{char}(\mathbb{K}) = p \geq 0$. We say that X is non-classical, if the gap sequence of a general $P \in X$ is not $1, \ldots, g$. If either $p = 0$ or, say, $p > 2g - 2$ (the lower bound may be improved), then each genus g curve is classical ([3, Theorem 11], [4, Theorem 15], [5]). For any $a = (a_1, \ldots, a_n) \in \mathbb{N}^n$ set $\|a\| = a_1 + \cdots + a_n$. Fix $P_1, \ldots, P_n \in X$ such that $P_i \neq P_j$ for all $i \neq j$. Let $H(P_1, \ldots, P_n) \subset \mathbb{N}^n$ be the set of all n-ples $(a_1, \ldots, a_n) \in \mathbb{N}^n$ such that $\mathcal{O}_X(a_1 P_1 + \cdots + a_n P_n)$ is spanned, i.e. such that there is a rational function on X defined over \mathbb{K} and with $a_1 P_1 + \cdots + a_n P_n$ as its divisor of poles. The set $H(P_1, \ldots, P_n)$ is a semigroup (called the Weierstrass semigroup of P_1, \ldots, P_n, for the componentwise addition $+: \mathbb{N}^n \times \mathbb{N}^n \to \mathbb{N}^n$ and $G(P_1, \ldots, P_n) := \mathbb{N}^n \setminus H(P_1, \ldots, P_n)$. We look at this semigroup when (P_1, \ldots, P_n) is general in X^n. When either $p = 0$ or $p > 2g - 2$, then $H(P_1, \ldots, P_n) = \{a \in \mathbb{N}^n : \|a\| \geq g + 1\}$
(use [4, Theorem] to all $|\omega_X(\sum b_i P_i)|$, $b_i \geq 0$). This is not true (for any $n \geq 1$) if X is non-classical. We prove the following result.

Theorem 1. Assume X non-classical of genus g with $2g - 2 < p^2$. Fix an integer $n > 1$ and a general $(P_1, \ldots, P_n) \in X^n$. Fix $a = (a_1, \ldots, a_n) \in \mathbb{N}^n$ such that $a_1 \leq 2p - 1$ and $a_i < p$ for all $i \geq 2$. We have $a \in H(P_1, \ldots, P_n)$ if and only if one of the following conditions is satisfied:

1. $a_1 < p$ and $\|a\| \geq g + 1$;

2. $a_1 = p$ and $a_h = 0$ for all $h \geq 2$;

3. $a_1 \geq p$ and $\|a\| \geq g + 2$;

Proof. For any $i = 1, \ldots, n$ let e_i be the i-th coordinate vector of \mathbb{N}^n. Fix $i \in \{1, \ldots, n\}$ and $b = (b_1, \ldots, b_n) \in \mathbb{N}^n$ with $b_i = 0$. Let W be the linear system $|\omega_X(-\sum h b_i P_h)|$ and let c be the dimension of the projective space W. Let $\{o_h\}_{h \geq 1}$ be the gap sequence of W at a general $P \in X$. If W is classical, then $o_h = h$ for $h = 1, \ldots, c$. If X is not classical, then the first integer t such that $\dim(W(-tP)) = \dim(W) - 2$ is a p-power ([2, 3.5]). Since $2g - 2 < p^2$, this p-power is exactly p. The linear system W depends only on $\{P_1, \ldots, P_n\}\setminus\{P_i\}$. Since P_i is general in X (after fixing all P_j, $j \neq i$), the linear system W has the same gap sequence at P and at P_i. We get that the first non-zero non-gap of W at P_i is either $c + 1$ or it is a p-power. Since $p^2 > 2g - 2$, in the latter case the first non-zero gap of P_i is p. By induction on n we get $h^0(\omega_X(-\sum h a_h P_h)) = \max\{0, g - a_1 - \cdots - a_n\}$ (and hence $a = (a_1, \ldots, a_n) \notin H(P_1, \ldots, P_n)$ if $a_1 < p$. If W is classical and $c = g - 1 - \|b\|$, then we get that the first integer x with $x e_i + b \in H(P_1, \ldots, P_n)$ is the first integer $x \geq 0$ such that $x + \|b\| \geq g + 1$. If $a_1 < p$, then we get that $a \in H(P_1, \ldots, P_n)$ if and only if $\|a\| \geq g + 1$. Now assume $a_1 \geq p$. We have $h^0(\mathcal{O}_X(pP_i)) = 2$ and $\mathcal{O}_X(pP_1)$ is spanned. Riemann-Roch gives $h^1(\mathcal{O}_X(pP_1)) = g + 1 - p$. The integers between $p + 1$ and $2p - 1$ are non-classical gaps, by the p-adic criterion ([6, Corollary 1.9]). We get $h^0(\mathcal{O}_X(a_1 P_1)) = 2$ if $a_1 \leq g + 1$ and $h^0(\mathcal{O}_X(a_1 P_1)) = a_1 + 1 - g$ if $a_1 \geq g + 2$. Hence $ze_1 \in H(P_1)$.

(a) First assume $a = a_1 e_1$. Since $a_1 \leq 2p - 1$, we saw that $a_1 \in H(P_1)$ if and only if either $a_1 = p$ or $a_1 \geq g + 2$.

(b) Now assume $a \neq a_1 e_1$. Since $a_h < p$ for all $h > 1$ and P_2, \ldots, P_n are general, then either $h^0(\mathcal{O}_X(\sum h a_h P_h)) = h^0(\mathcal{O}_X(a_1 P_1))$ or $h^1(\mathcal{O}_X(\sum h a_h P_h)) = 0$. In the former case $a \notin H(P_1, \ldots, P_n)$. In the latter case we also get that no a_h, $h > 1$, is in the base locus of $\mathcal{O}_X(\sum h a_h P_h)$ if and only if either $h^1(\mathcal{O}_X(a_1 P_1)) = 0$ or $\|a\| - a_1 \geq h^1(\mathcal{O}_X(a_1 P_1)) + 1$.

(b1) Assume $h^1(\mathcal{O}_X(a_1P_1)) > 0$ and $\|a\| - a_1 \geq h^1(\mathcal{O}_X(a_1P_1)) + 1$. If $a_1 \in H(P_1)$ (in step (b1) this is true if and only if $a_1 = p$), then $a \in H(P_1, \ldots, P_n)$. Now assume $a_1 \notin H(P_1)$. Obviously $a \in H(P_1, \ldots, P_n)$ if and only if P_1 is not in the base locus of $\mathcal{O}_X(\sum_i a_iP_i)$. By step (a) we get that $h^0(\mathcal{O}_X(a_1P_1)) = 2$, that $(a_1 - p)P_1$ is the base scheme of $\mathcal{O}_X(a_1P_1)$ and that $h^1(\mathcal{O}_X((a_1 - 1)P_1)) = h^1(\mathcal{O}_X(a_1P_1)) + 1$. Since $2g - 2 < p^2$ and P_2, \ldots, P_n are general, we get $h^1(\mathcal{O}_X((\sum a_iP_i - P_1)) = \max\{0, h^1(\mathcal{O}_X(a_1P_1)) + 1 - \|a\| + a_1\}$. Hence $a \in H(P_1, \ldots, P_n)$ if and only if $\|a\| - a_1 \geq h^1(\mathcal{O}_X(a_1P_1)) + 1 = g + 2 - a_1$.

(b2) Assume $h^1(\mathcal{O}_X(a_1P_1)) = 0$. If $a_1 \in H(P_1)$ (i.e. if $a_1 \geq g + 2$), then $a \in H(P_1, \ldots, P_n)$. Now assume $a_1 \notin H(P_1)$. We saw that $h^0(\mathcal{O}_X(a_1P_1)) = 2$. Since $h^1(\mathcal{O}_X(a_1P_1)) = 0$, we get $a_1 = g + 1$ and $h^1(\mathcal{O}_X((a_1 - 1)P_1)) = 1$. We have $a \in H(P_1, \ldots, P_n)$ if and only if $\|a\| - a_1 \geq 2$, i.e. $\|a\| \geq g + 2$.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

