SOME FUNCTIONS VIA $\Lambda_b(V_b)$-SETS

G. Shanmugam1,§, N. Karthikeyan2,, N. Rajesh3

1,2Department of Mathematics
Jeppiaar Engineering College
Chennai 600119, Tamilnadu, INDIA
3Department of Mathematics
Rajah Serfoji Govt. College
Thanjavur, 613005, Tamilnadu, INDIA

Abstract: In this paper, we introduce and study some new types of functions by the use of Λ_b-sets and V_b-sets.

AMS Subject Classification: 54C10, 54D10
Key Words: topological spaces, Λ_b-set, V_b-set, Λ_b-continuous functions, Λ_b-irresolute functions

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. The concept of b-open set in a topological space was introduced by Andrijevic in 1996 [1]. But one year later, this notion was also called γ-open sets due to El-Atik [7]. A subset A of a topological space (X, τ) is said to be b-open (=γ-open [7]) if $A \subset \text{Int}(\text{Cl}(A)) \cup \text{Cl}(\text{Int}(A))$, where $\text{Cl}(A)$ denotes the closure of A and $\text{Int}(A)$ denotes the interior of A in (X, τ). The complement A^c of a b-open...
set A is called b-closed [1] ($=\gamma$-closed [7]). The family of all b-open (resp. b-closed) sets in (X, τ) is denoted by $BO(X, \tau)$ (resp. $BC(X, \tau)$). The intersection of all b-closed sets containing A is called the b-closure of A [1] and is denoted by $bCl(A)$. Quite recently Caldas et. al. [3] used b-open sets to define and investigate the Λ_b-sets (resp. V_b-sets) which are intersection of b-open (resp. union of b-closed) sets. The purpose of the present paper is introduce d and studied some new type of functions by using Λ_b-sets and V_b-sets. The family of all b-open sets of (X, τ) containing a point $x \in X$ is denoted by $BO(X, x)$.

2. Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, ν) (or simply X, Y and Z) will always denote topological spaces on which no separation axioms are assumed, unless explicitly stated.

Definition 2.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be b-continuous [7] ($=\gamma$-continuous [7]) (resp. b-irresolute [7]($=\gamma$-irresolute [7])) if for every $A \in \sigma$ (resp. $A \in BO(Y, \sigma)$) $f^{-1}(A) \in BO(X, \tau)$, or equivalently, f is b-continuous (resp. b-irresolute) if and only if for every closed set A (resp. b-closed set A) of (Y, σ), $f^{-1}(A) \in BC(X, \tau)$.

Definition 2.2. Let B be a subset of a topological space (X, τ). B is a Λ_b-set (resp. V_b-set) [3], if $B = B^{\Lambda_b}$ (resp. $B = B^{V_b}$), where: $B^{\Lambda_b} = \cap\{O : O \supseteq B, O \in BO(X, \tau)\}$ and $B^{V_b} = \cup\{F : F \subset B; F^c \in BO(X, \tau)\}$.

The family of all Λ_b-sets (resp. V_b) of (X, τ) is denoted by τ^{Λ_b} (resp. τ^{V_b}).

Proposition 2.3. For a space (X, τ), the following statements hold:

(i) \emptyset and X are Λ_b-sets and V_b-sets.

(ii) Every union of Λ_b-sets (resp. V_b-sets) is a Λ_b-set (resp. V_b-set).

(iii) Every intersection of Λ_b-sets (resp. V_b-sets) is a Λ_b-set (resp. V_b-set).

Proposition 2.4. Let A, B for some $\{B : \alpha \in \Omega\}$ be subsets of a topological space (X, τ). Then the following properties are valid [3]:

(a) $B \subset B^{\Lambda_b}$;

(b) If $A \subset B$, then $A^{\Lambda_b} \subset B^{\Lambda_b}$;

(c) $B^{\Lambda_b}A^{\Lambda_b} = B^{\Lambda_b}$;

(d) $(\bigcup_{\alpha \in \Omega} B)^{\Lambda_b} = \bigcup_{\alpha \in \Omega} B^{\Lambda_b}$;

(e) If $A \in BO(X, \tau)$, then $A = A^{\Lambda_b}$ (i.e, A is an Λ_b-set);

(f) $(B^c)^{\Lambda_b} = (B^{V_b})^c$;

(g) $B^{V_b} \subset B$;
SOME FUNCTIONS VIA $\Lambda_b(V_b)$-SETS

(h) If $B \in BC(X, \tau)$, then $B = B^{V_b}$ (i.e., A is a V_b-set);
(i) $(\bigcup_{\alpha \in \Omega} B)^{\Lambda_b} \subset \bigcup_{\alpha \in \Omega} B^{\Lambda_b}$;
(j) $(\bigcup_{\alpha \in \Omega} B)^{V_b} \supseteq \bigcup_{\alpha \in \Omega} B^{V_b}$.

Definition 2.5. A topological space X is said to be:
(a) R_0-space [5] if for each open set V of X and each $x \in V$, $Cl(\{x\}) \subset V$
(b) b-R_0 [6] if every b-open set contains the b-closure of each of its singletons.
(c) b-T_1 [3] if to each pair of distinct points x, y of X there corresponds a b-open set A containing x but not y a b-open set B containing y but not x, or equivalently, (X, τ) is a b-T_1-space if and only if every singleton is b-closed.

3. Λ_b-Continuity and Λ_b-Irresoluteness

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be:
(i) Λ_b-continuous if $f^{-1}(V)$ is a Λ_b-set in (X, τ) for every open set V of (Y, σ),
(ii) Λ_b-irresolute if $f^{-1}(V)$ is a Λ_b-set in (X, τ) for every Λ_b-set V of (Y, σ),
(iii) pre-Λ_b-open (resp. pre-b-open) if $f(A)$ is a Λ_b-set (resp. b-open set) of (Y, σ) for every Λ_b-set (resp. b-open set) A of (X, τ).

Proposition 3.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:
(i) if f is Λ_b-continuous,
(ii) $f : (X, \tau^{\Lambda_b}) \to (Y, \sigma)$ is continuous,
(iii) $f : (X, \tau^{V_b}) \to (Y, \sigma)$ is continuous.

Proof. Clear.

Definition 3.3. (i): A filterbase Λ is said to be Λ_b-convergent to a point x in X if for any $U \in S^{\Lambda_b}$ containing x, there exists $B \in \Lambda$ such that $B \subset U$.
(ii): A filterbase Λ is said to be convergent to a point x in X if for any open set U of X containing x, there exists $B \in \Lambda$ such that $B \subset U$.

Theorem 3.4. If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ_b-continuous, then for each point $x \in X$ and each filterbase \mathcal{F} in X Λ_b-converging to x, the filter base $f(\mathcal{F})$ is convergent to $f(x)$.

Proof. Let $x \in X$ and \mathcal{F} be any filterbase in X Λ_b-converging to x. Since f is Λ_b-continuous, then for any open set V of (Y, σ) containing $f(x)$, there exists
There exists a filter base \(f \) containing \(x \) such that \(f(U) \subset V \). Since \(\Lambda_b \) is \(\Lambda_b \)-converging to \(x \), there exists \(B \in F \) such that \(B \subset U \). This means that \(f(B) \subset V \) and hence the filter base \(f(F) \) is convergent to \(f(x) \). \(\square \)

Definition 3.5. A sequence \((x_n)\) is said to be \(\Lambda_b \)-convergent to a point \(x \) if for every \(\Lambda_b \) set \(V \) containing \(x \), there exists an index \(x_0 \) such that for \(n \geq n_0 \), \(x_n \in V \).

Theorem 3.6. If a function \(f : (X, \tau) \to (Y, \sigma) \) is \(\Lambda_b \)-continuous, then for each point \(x \in X \) and each net \((x_n)\) which is \(\Lambda_b \)-convergent to \(x \), the net \(f(x_n) \) is convergent to \(f(x) \).

Proof. The proof is similar to that of Theorem 4.15.

Recall that for a function \(f : (X, \tau) \to (Y, \sigma) \), the subset \(\{(x, f(x)) : x \in X\} \subset X \times Y \) is called the graph of \(f \) and is denoted by \(G(f) \). \(\square \)

Definition 3.7. A graph \(G(f) \) of a function \(f : (X, \tau) \to (Y, \sigma) \) is said to be strong \(\Lambda_b \)-set if for each \((x, y) \in (X \times Y) \setminus G(f)\), there exist \(U \in S^{\Lambda_b} \) containing \(x \) and a closed set \(V \) of \(Y \) containing \(y \) such that \((U \times V) \cap G(f) = \emptyset \).

Lemma 3.8. A graph \(G(f) \) of a function \(f : (X, \tau) \to (Y, \sigma) \) is strong \(\Lambda_b \)-set in \(X \times Y \) if and only if for each \((x, y) \in (X \times Y) \setminus G(f)\), there exist \(U \in S^{\Lambda_b} \) containing \(x \) and a closed set \(V \) of \(Y \) containing \(y \) such that \(f(U) \cap V = \emptyset \).

Theorem 3.9. If \(f : (X, \tau) \to (Y, \sigma) \) is a \(\Lambda_b \)-continuous function and \((Y, \sigma)\) is a \(T_1 \)-space, then \(G(f) \) is strong \(\Lambda_b \)-set.

Proof. Let \((x, y) \in (X \times Y) \setminus G(f)\). Then \(y \neq f(x) \). Since \(Y \) is \(T_1 \) there exits an open set \(V \) in \(Y \) such that \(f(x) \in V \) and \(y \notin V \). Since \(f \) is \(\Lambda_b \)-continuous, there exit \(U \in S^{\Lambda_b} \) containing \(x \) such that \(f(U) \subset V \). Therefore, \(f(U) \cap (Y \setminus V) = \emptyset \) and \(Y \setminus V \) is closed subset of \(Y \) containing \(y \). This show that \(G(f) \) is strong \(\Lambda_b \)-set. \(\square \)

Definition 3.10. A topological space \(X \) is said to be \(\Lambda_b \)-connected if there does not exist disjoint \(\Lambda_b \)-set \(A \) and \(B \) such that \(A \cup B = X \).

Theorem 3.11. If \(f : (X, \tau) \to (Y, \sigma) \) is a \(\Lambda_b \)-continuous surjective function and \(X \) is \(\Lambda_b \)-connected, then \(Y \) is connected.

Proof. Follows from the definitions. \(\square \)

Definition 3.12. A collection \(\{G_{\alpha} : \alpha \in \Delta\} \) is said to be \(\Lambda_b \)-cover of a subset \(A \) of a topological space \((X, \tau)\) if \(A \subset \bigcup \{G_{\alpha} : X \setminus G_{\alpha} \in S^{\Lambda_b}, \alpha \in \Delta\} \).
Definition 3.13. A topological space \(X \) is said to be
(i) \(\Lambda_b \)-compact if every \(\Lambda_b \)-open cover of \(X \) has a finite subcover;
(ii) countably \(\Lambda_b \)-compact if every \(\Lambda_b \)-open countable cover of \(X \) has a finite subcover;
(iii) \(\Lambda_b \)-Lindelöf if every cover of \(X \) by \(\Lambda_b \)-open set has a countable subcover.

Theorem 3.14. If \(f : (X, \tau) \to (Y, \sigma) \) is a \(\Lambda_b \)-continuous surjection and
\((X, \tau) \) is \(\Lambda_b \)-compact (resp. countably \(\Lambda_b \)-compact, \(\Lambda_b \)-Lindelöf), then \(Y \) is compact (resp. countably compact, Lindelöf).

Proof. Follows from the definitions. \(\square \)

Theorem 3.15. If \(f : (X, \tau) \to (Y, \sigma) \) is a \(\Lambda_b \)-continuous injective function
and \((Y, \sigma) \) is a \(T_2 \)-space, then \((X, \tau) \) is \(\Lambda_b -T_2 \)-space.

Proof. For any pair of distinct points \(x \) any \(y \) in \(X \), there exist distinct open
sets \(U \) and \(V \) in \(Y \) such that \(f(x) \in U \) and \(f(y) \in V \). Since \(f \) is \(\Lambda_b \)-continuous,
\(f^{-1}(U) \) and \(f^{-1}(V) \) are \(\Lambda_b \)-sets in \(X \) containing \(x \) any \(y \), respectively. Therefore
\(f^{-1}(U) \cap f^{-1}(V) = \emptyset \) because \(U \cap V = \emptyset \). This show that \((X, \tau) \) is \(\Lambda_b -T_2 \) \(\square \)

Proposition 3.16. For a function \(f : (X, \tau) \to (Y, \sigma) \) the following properties are equivalent:
(i) \(f \) is \(\Lambda_b \)-irresolute,
(ii) \(f : (X, \tau^{\Lambda_b}) \to (Y, \sigma^{\Lambda_b}) \), is continuous,
(iii) \(f : (X, \tau^{V_b}) \to (Y, \sigma^{V_b}) \), is continuous.

Proof. (i) \(\implies \) (ii) This is obvious. (ii) \(\implies \) (iii): Let \(B \) be any \(V_b \)-sets of
\((Y, \sigma) \). Than \(B^c \) is a \(\Lambda_b \)-sets of \((Y, \sigma) \) and \(f^{-1}(B^c) \) is a \(\Lambda_b \)-sets of \((X, \tau) \) (iii) \(\implies \)
(i): Let \(B \) be any \(\Lambda_b \)-sets of \((Y, \sigma) \) then \(B^c \) is a \(V_b \)-sets. Also \(f^{-1}(B^c) = (f^{-1}(B))^c \)
is a \(V_b \)-set. Thus \(f^{-1}(B) \) is \(\Lambda_b \)-sets. \(\square \)

Theorem 3.17. For a function \(f : (X, \tau) \to (Y, \sigma) \), the following properties hold.
(i) If \(f \) is \(b \)-irresolute, then it is \(\Lambda_b \)-irresolute;
(ii) If \(f \) is \(b \)-open and injective, then it is pre-\(\Lambda_b \)-open

Proof. (i) Let \(B \) be a \(\Lambda_b \)-sets of \((Y, \sigma) \). Since \(f \) is \(b \)-irresolute, we have
\(f^{-1}(B) \subset (f^{-1}(B))^{\Lambda_b} \cap \{ U | f^{-1}(B) \subset U \in BO(X, \tau) \} \subset \cap \{ f^{-1}(V) | V \subset \}
\in BO(Y, \sigma) \} = f^{-1}(\cap \{ V | B \subset V \in BO(Y, \sigma) \}) = (f^{-1}(B))^{\Lambda_b} = f^{-1}(B) \).
Therefore, we obtain \(f^{-1}(B) = (f^{-1}(B))^{\Lambda_b} \) which show that \(f^{-1}(B) \) is a \(\Lambda_b \)
set. Consequently, \(f \) is \(\Lambda_b \)-irresolute.
(ii) Let \(A \) be a \(\Lambda_b \)-set of \((X, \tau) \). Since \(f \) is pre-\(b \)-open and injective. We have
and bijective, then
\[f(A) = f(\cap \{ \{U | A \subset U \in BO(X, \tau) \} \}) = \cap \{ f(\{U | A \subset U \in BO(X, \tau) \}) \} = \cap \{ f(U) | A \subset U \in BO(X, \tau) \} \supset \cap \{ V | f(A) \subset V \in BO(Y, \sigma) \} = (f(A))^A_b \supset f(A). \] Therefore we obtain \(f(A) = (f(A))^A_b \). Which show that \(f(A) \) is a \(\Lambda_b \)-set. Consequently, \(f \) is pre-\(\Lambda_b \)-open. \(\square \)

Corollary 3.18. If \(f : (X, \tau) \to (Y, \sigma) \) is bijective, \(b \)-irresolute and pre-\(b \)-closed, then

(i) for every \(V_b \)-set \(B \) of \((Y, \sigma) \), then \(f^{-1}(B) \) is a \(V_b \)-set of \((X, \tau) \)

(ii) for every \(V_b \)-set \(B \) of \((X, \tau) \), then \(f(B) \) is a \(V_b \)-set of \((Y, \sigma) \)

Proposition 3.19. (i) If \(f : (X, \tau) \to (Y, \sigma) \) is a \(\Lambda_b \)-irresolute function and \(g : (Y, \sigma) \to (Z, \gamma) \) is a \(\Lambda_b \)-continuous function, then the composition \(g \circ f : (X, \tau) \to (Z, \gamma) \) is \(\Lambda_b \)-continuous.

(ii) If \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \gamma) \) are both \(\Lambda_b \)-irresolute, then the composition \(g \circ f : (X, \tau) \to (Z, \gamma) \) is \(\Lambda_b \)-irresolute.

Proof. It follows directly from the definitions. \(\square \)

Definition 3.20. A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be \(V_b \)-closed if for each closed set \(F \) of \(X \), \(f(F) \) is a \(V_b \) set of \((Y, \sigma) \).

Theorem 3.21. A function \(f : (X, \tau) \to (Y, \sigma) \) is \(V_b \)-closed if and only if for each subset \(S \) of \(Y \) and for each open set \(U \) containing \(f^{-1}(S) \), there is a \(\Lambda_b \)-set \(V \) of \(Y \) such that \(S \subset V \) and \(f^{-1}(V) \subset U \).

Proof. Let \(S \) be a subset of \(Y \) and \(U \) be an open subset of \(X \) such that \(f^{-1}(S) \subset U \). Then, \(Y \setminus f(X \setminus U) = V \) (say), is a \(\Lambda_b \)-set containing \(S \) such that \(f^{-1}(V) \subset U \). Conversely, let \(F \) be an arbitrary closed set of \(X \). Then \(f^{-1}(Y \setminus f(F)) \subset X \setminus F \) and \(X \setminus F \) is open in \(X \). By hypothesis, there is a \(\Lambda_b \)-set \(V \) of \(Y \) such that \(Y \setminus f(F) \subset V \) and \(f^{-1}(V) \subset X \setminus F \) hence \(Y \setminus V \subset f(F) \subset f(X \setminus f^{-1}(V)) \subset Y \setminus V \), which implies \(f(F) = Y \setminus V \). Since \(Y \setminus V \) is a \(V_b \)-set, \(f(F) \) is a \(V_b \)-set; hence \(f \) is a \(V_b \)-closed function. \(\square \)

We consider now some composition properties interms of \(V_b \)-sets.

Theorem 3.22. Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \gamma) \) be two functions such that \(g \circ f : (X, \tau) \to (Z, \gamma) \) is \(V_b \)-closed. Then, (i) if \(f \) is continuous and surjective, then \(g \) is \(V_b \)-closed, (ii) if \(g \) is \(b \)-irresolute, pre-\(b \)-closed and bijective, then \(f \) is \(V_b \)-closed.

Proof. (i) Let \(F \) be an arbitrary closed set in \((X, \tau) \). Then \(f \) is a \(V_b \)-set in \((Y, \sigma) \). Since \(g \) is bijective, \(b \)-irresolute and pre-\(b \)-closed, \((g \circ f)(F) = g(f(F)) \) is a
V_b-set by Corollary 3.21(ii). (ii) The proof follows immediately from definitions. Regarding the restriction $f|_A$ of a function $f : (X, \tau) \to (Y, \sigma)$ to a subset A of X, we have the following:

\begin{align*}
\text{Theorem 3.23.} \quad & (i) \text{ If } f : (X, \tau) \to (Y, \sigma) \text{ is } V_b \text{-closed and } A \text{ is a closed set in } (X, \tau), \text{ then its restriction } f|_A : (A, \tau|_A) \to (Y, \sigma) \text{ is } V_b \text{-closed.} \\
& (ii) \text{ Let } B \text{ be a } V_b \text{-set of } (Y, \sigma) \text{ If } f : (X, \tau) \to (Y, \sigma) \text{ is } V_b \text{-closed, then } f|_A : (A, \tau|_A) \to (Y, \sigma) \text{ is } V_b \text{-closed, where } A = f^{-1}(B). \\
\end{align*}

\textbf{Proof.} (i) Let F be a closed set of $(A, \tau|_A)$. Since A is closed in (X, τ), F is closed in (X, τ) and $f_A(F) = f(F)$ is a V_b-closed set of (Y, σ). Therefore, $f|_A$ is V_b-closed. (ii) Let F be a closed set of A. Then $F = A \cap H$ for some closed set H of (X, τ). By Proposition 2.3, we have $f(H) \cap B$ is a V_b-set in (Y, σ) since B is a V_b-set. Using $f|_A(F) = f(A \cap H) = f(H) \cap B$, $f|_A$ is V_b-closed.

\textbf{Definition 3.24.} A topological space (X, τ) is said to be T_b-space if $\tau_{\Lambda_b} = \tau^{V_b}$.

\textbf{Theorem 3.25.} For a topological space (X, τ), the following properties are equivalent:

(i) (X, τ) is a b-R_0 space;

(ii) (X, τ^{V_b}) is discrete;

(iii) (X, τ^{Λ_b}) is discrete;

(iv) For each $x \in X$, $\{x\}$ is a Λ_b-set of (X, τ);

(v) $P = (P)^b$ for each $P \in BO(X, \tau)$;

(vi) (X, τ) is a T_b-space;

(vii) (X, τ^{Λ_b}) is a R_0 space;

\textbf{Proof.} (i) \Rightarrow (ii): It is shown in Theorem 3.11 of [4] that (X, τ) is b-R_0 if and only if it is b-T_1. In [3], it is shown that if (X, τ) is b-T_1, then (X, τ^{Λ}) is discrete. (ii) \Rightarrow (iii): This is obvious. (iii) \Rightarrow (iv): For each $x \in X$, $\{x\}$ is a Λ_b-open and $\{x\}$ is a Λ_b-closed set of (X, τ). (iv) \Rightarrow (v): Let P be a b-open set of X. Let $y \in P^c$ then $(\{y\})^\Lambda \supset P^c$ by the assumption. By using Proposition 2.4, we have $P^c \supset \Lambda_b(\{y\}) = (P^c)^\Lambda_b$, and hence $P^c = (P^c)^\Lambda_b$. Then it follows from Proposition 4 that $P = (P^c)^b \Rightarrow (vi)$: By (v), we have $BO(X, \tau) \subset \tau^{\Lambda_b}$. First we show that $\tau^{\Lambda_b} \subset \tau^{V_b}$. Let A be any Λ_b of (X, τ). Then $A = \cap\{V \setminus A \subset V \in BO(X, x)\}$. Since $BO(X, \tau) \subset \tau^{V_b}$, By Proposition 4 we have $A \subset \tau^{V_b}$ and $\tau^{\Lambda_b} \subset \tau^{V_b}$. Next let $A \subset \tau^{V_b}$. Then $X \setminus A \subset \tau^{\Lambda_b}$. Therefore $A \subset \tau^{\Lambda_b}$ and $\tau^{V_b} \subset \tau^{\Lambda_b}$. Consequently, we obtain $\tau^{V_b} = \tau^{\Lambda_b}$ and (X, τ) is a T_b-space. (vi) \Rightarrow (vii) Suppose that $V \in \tau^{\Lambda_b}$ and $x \in V$. Since (X, τ) is a T_b-space, $V \in \tau^{V_b}$ and $V^c \in \tau^{\Lambda_b}$. Since $\{x\} \cap V^c = \emptyset$, $\cl_{\tau^{\Lambda_b}}(\{x\}) \cap V^c = \emptyset$.
and $\text{Cl}_{\tau A_b}(\{x\}) \subset V$ where $\text{Cl}_{\tau A_b}(\{x\})$ denotes the closure of $\{x\}$ in $(X, \tau A_b)$.

(viii) \Rightarrow (i): Let $V \in BO(X, \tau)$ and $x \in V$. Since $BO(X, \tau) \subset \tau A_b$, by (vii), $\text{Cl}_{\tau A_b}(\{x\}) \subset V$. Since $\text{Cl}_{\tau A_b}(\{x\}) \subset \tau V b$, we have $\text{Cl}_{\tau A_b}(\{x\}) = \bigcup\{F : F \in BC(X, \tau), F \subset \text{Cl}_{\tau A_b}(\{x\})\}$ and $x \in \text{Cl}_{\tau A_b}(\{x\})$. There exist $F \in BC(X, \tau)$ such that $x \in X$ and hence we have $b \text{Cl}(\{x\}) \subset F \subset \text{Cl}_{\tau A_b}(\{x\}) \subset V$. This shows that (X, τ) is a b-R_0-space.

Corollary 3.26. If (X, τ) is a b-R_0-space, then $(X, \tau A_b)$ is a R_0-space.

Definition 3.27. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called a Λ_b-homeomorphism if it is Λ_b-irresolute, pre-Λ_b-open and bijective.

Theorem 3.28. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following properties hold:

(i) If f is Λ_b-irresolute injection and (Y, σ) is a T_b-space, then (X, τ) is a T_b-space.

(ii) If f is pre-Λ_b-open surjection and (X, τ) is a T_b-space, then (Y, σ) is a T_b-space.

(iii) Let f be Λ_b-homeomorphism. Then (X, τ) is a T_b-space, if and only if (Y, σ) is a T_b-space.

Proof. (i) This follows from Theorem 4.17. (ii) This is analogous to the proof of (i). (iii) This is an immediate consequence of (i) and (ii).

4. Weakly Pre-Λ_b-Open Functions

Definition 4.1. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be weakly pre-Λ_b-open if the image of every Λ_b-set set in X is open in Y.

Clearly, every pre-Λ_b-open function is weakly pre-Λ_b-open. But the converse is not true in general.

Example 4.2. Let $X = \{(a, b, c)\}$ and $\tau = \emptyset, \{a\}, X\}$. Then the identity function f on X is weakly pre-Λ_b-open but not pre-Λ_b-open.

Remark 4.3. It is evident that, the concepts weakly pre-Λ_b-openness and Λ_b-continuity are coincide if the function is a bijective.

Theorem 4.4. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is weakly pre-Λ_b-open if and only if for every subset U of X, $f(\text{Int}_{\tau A_b}(U)) \subset \text{Int}(f(U))$.
Proof. Let \(f \) be weakly pre-\(\Lambda_b \)-open map. Now we have \(\text{Int} \, f(U) \subset U \) and \(\text{Int}_{\tau_{\Lambda_b}}(U) \) is a \(\Lambda_b \)-set. Hence we obtain that \(f(\text{Int}_{\tau_{\Lambda_b}}(U)) \subset f(U) \). As \(f(\text{Int}_{\tau_{\Lambda_b}}(U)) \) is open, then \(f(\text{Int}_{\tau_{\Lambda_b}}(U)) \subset \text{Int}(f(U)) \). Conversely, assume that \(U \) be a \(\Lambda_b \)-set in \(X \). Then \(f(U) = f(\text{Int}_{\tau_{\Lambda_b}}(U)) \subset \text{Int}(f(U)) \). But usually \(\text{Int}(f(U)) \subset f(U) \). Consequently \(f(U) = \text{Int}(f(U)) \) and hence \(f \) is weakly pre-\(\Lambda_b \)-open.

Lemma 4.5. A function \(f : (X, \tau) \to (Y, \sigma) \) is weakly pre-\(\Lambda_b \)-open then \(\text{Int}_{\tau_{\Lambda_b}}(f^{-1}(G)) \subset f^{-1}(\text{Int}(G)) \) for every subset \(G \) of \(Y \).

Proof. Let \(G \) be an arbitrary subset of \(Y \). Then \(\text{Int}_{\tau_{\Lambda_b}}(f^{-1}(G)) \) is a \(\Lambda_b \)-set in \(X \) and \(f \) is weakly pre-\(\Lambda_b \)-open, then \(f(\text{Int}_{\tau_{\Lambda_b}}(f^{-1}(G))) \subset \text{Int}(f^{-1}(G)) \subset \text{Int}(G) \). Thus \(\text{Int}_{\tau_{\Lambda_b}}(f^{-1}(G)) \subset f^{-1}(\text{Int}(G)) \).

Definition 4.6. A subset \(S \) is called a \(\Lambda_b \)-neighbourhood of a point of \(x \) of \(X \) if there exist a \(\Lambda_b \)-set \(U \) such that \(x \in U \subset S \).

Theorem 4.7. For a function \(f : (X, \tau) \to (Y, \sigma) \), the following are equivalent:

1. \(f \) is weakly pre-\(\Lambda_b \)-open;
2. For each subset \(U \) of \(X \), \(f(\text{Int}_{\tau_{\Lambda_b}}(U)) \subset \text{Int}(f(U)) \);
3. For each \(x \in X \) and each \(\Lambda_b \)-neighbourhood \(U \) of \(x \) in \(X \), there exists a neighbourhood \(V \) of \(f(x) \) in \(Y \) such that \(V \subset f(U) \).

Proof. \((i) \Rightarrow (ii)\): It follows from Theorem 4.4. \((ii) \Rightarrow (iii)\): Let \(x \in X \) and \(U \) be an arbitrary \(\Lambda_b \)-neighbourhood of \(x \) in \(X \). Then there exists a \(\Lambda_b \)-set \(V \) in \(X \) such that \(x \in V \subset U \). Then by \((ii)\), we have \(f(V) = f(\text{Int}_{\tau_{\Lambda_b}}(V)) \subset \text{Int}(f(U)) \) and hence \(f(V) = \text{Int}(f(V)) \). Therefore, it follows that \(f(V) \) is open in \(Y \) such that \(f(x) \in f(V) \subset f(U) \). \((iii) \Rightarrow (i)\): Let \(U \) be an arbitrary \(\Lambda_b \)-set in \(X \), Then for each \(y \in f(U) \), by \((iii)\) there exists a neighbourhood \(V_y \) of \(y \) in \(Y \) such that \(V_y \subset f(U) \). As \(V_y \) is a neighbourhood of \(y \), there exists an open set \(W_y \) in \(Y \) such that \(y \in W_y \subset V_y \). Thus, \(f(U) = \bigcup(W_y : y \in f(U)) \) which is an open set in \(Y \). This implies that \(f \) is weakly pre-\(\Lambda_b \)-open function.

Theorem 4.8. A function \(f : (X, \tau) \to (Y, \sigma) \) is weakly pre-\(\Lambda_b \)-open if and only if for any subset \(B \) of \(Y \) and for any \(\Lambda_b \)-set \(F \) of \(X \) containing \(f^{-1}(B) \), there exists a closed set \(G \) of \(Y \) containing \(B \) such that \(f^{-1}(G) \subset F \).

Proof. Similar to the proof of Theorem 3.24.

Theorem 4.9. A function \(f : (X, \tau) \to (Y, \sigma) \) is weakly pre-\(\Lambda_b \)-open if and only if \(f(\text{Cl}(B)) \subset \text{Cl}_{\tau_{\Lambda_b}}(f(B)) \) for every subset \(B \) of \(Y \).
Proof. Suppose that \(f \) is weakly pre-\(\Lambda_b \)-open. For any subset \(B \) of \(Y \), \(f^{-1}(B) \subset \text{Cl}_{\tau_B}((f^{-1}(B)) \). Therefore by Theorem 4.8, there exists a closed set \(F \) in \(Y \) such that \(B \subset F \) and \(f^{-1}(F) \subset \text{Cl}_{\tau_B}(f^{-1}(B)) \). Therefore, we obtain \(f^{-1}(\text{Cl}(B)) \subset f^{-1}(F) \subset \text{Cl}_{\tau_B}(f^{-1}(B)) \). Conversely, let \(B \subset Y \) and \(F \) be a \(\Lambda_b \)-set of \(X \) containing \(f^{-1}(B) \). Put \(W = \text{Cl}(B) \), then we have \(B \subset W \) and \(W \) is closed and \(f^{-1}(W) \subset \text{Cl}_{\tau_B}(f^{-1}(B)) \subset F \). Then by Theorem 44, \(f \) is weakly pre-\(\Lambda_b \)-open. \(\square \)

Lemma 4.10. Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be two functions and \(g \circ f : X \to Z \) is weakly pre-\(\Lambda_b \)-open. If \(g \) is continuous injective, then \(f \) is weakly pre-\(\Lambda_b \)-open.

Proof. Let \(U \) be a \(\Lambda_b \)-set in \(X \), then \((g \circ f)(U) \) is open in \(Z \), since \(g \circ f \) is weakly pre-\(\Lambda_b \)-open. Again \(g \) is an injective continuous function, \(f(U) = g^{-1}(g \circ f(U)) \) is open in \(Y \). This show that \(f \) is weakly pre-\(\Lambda_b \)-open. \(\square \)

Theorem 4.11. If \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) are two weakly pre-\(V_b \)-closed functions, then \(g \circ f : X \to Z \) is a weakly pre-\(V_b \)-closed function.

Proof. Obvious. \(\square \)

Furthermore, we have the following.

Theorem 4.12. If \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be any two functions. Then

(i). If \(f \) is \(V_b \)-closed and \(g \) is weakly pre-\(V_b \)-closed, then \(g \circ f \) is closed;

(ii) If \(f \) is weakly pre-\(V_b \)-closed and \(g \) is \(V_b \)-closed, then \(g \circ f \) is pre-\(V_b \)-closed;

(iii) If \(f \) is pre-\(V_b \)-closed and \(g \) is weakly pre-\(V_b \)-closed, then \(g \circ f \) is weakly pre-\(V_b \)-closed;

Proof. Obvious. \(\square \)

Theorem 4.13. If \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \eta) \) be any two functions such that \(g \circ f : X \to Z \) is weakly pre-\(\Lambda_b \)-closed.

(i) If \(f \) is \(V_b \)-irresolute surjective, then \(g \) is closed.

(ii) If \(g \) is \(V_b \)-continuous injective, then \(f \) is pre-\(V_b \)-closed.

Proof. (i) Suppose \(F \) is an arbitrary \(V_b \)-closed set in \(Y \). As \(f \) is \(V_b \)-irresolute, \(f^{-1}(F) \) is \(V_b \)-set in \(X \). Since \(g \circ f \) is weakly pre-\(V_b \)-closed and \(f \) is surjective, \((g \circ f(f^{-1}(F))) = g(F) \), which is closed in \(Z \). This implies that \(g \) is a closed function. (ii) Suppose \(F \) is any \(V_b \)-closed set in \(X \). Since \(g \circ f \)
is weakly pre-V_b-closed, $(g \circ f)(F)$ is closed in Z. Again g is a V_b-continuous injective function, $g^{-1}(g \circ f(F)) = f(F)$, which is V_b-closed in Y. This shows that f is pre-V_b-closed. \qed

Theorem 4.14. Let (X, τ) and (Y, σ) be topological spaces. Then the function $g : (X, \tau) \to (Y, \sigma)$ is a weakly pre-V_b-closed if and only $g(X)$ is closed in Y and $g(V) - g(X - V)$ is open in $g(X)$ whenever V is Λ_b-closed in X.

Proof. Necessity: Suppose $g : (X, \tau) \to (Y, \sigma)$ is a weakly pre-V_b-closed function. Since X is Λ_b-set, $g(X)$ is closed in Y and $g(V) - g(X - V) = g(X) - g(X - V)$ is open in $g(X)$ when V is Λ_b-closed in X. Sufficiency: Suppose $g(X)$ is closed in Y, $g(V) - g(X - V)$ is open in $g(X)$ when V is Λ_b-closed in X, and let C be closed in X. Then $g(C) = g(X) - (g(X - C) - g(C))$ is closed in $g(X)$ and hence, closed in Y. \qed

Corollary 4.15. Let (X, τ) and (Y, σ) be topological spaces. Then a surjective $g : (X, \tau) \to (Y, \sigma)$ is a weakly pre-Λ_b-closed if and only if $g(V) - g(X - V)$ is open in Y whenever U is Λ_b-closed in X.

Corollary 4.16. Let (X, τ) and (Y, σ) be topological spaces and let $g : (X, \tau) \to (Y, \sigma)$ be a Λ_b-continuous weakly pre-Λ_b-closed surjective function. Then the topology on Y is $\{g(V) - g(X - V) : V \text{ is } V_b\text{-set in } X\}$.

Proof. Let W be open in Y. Then $g^{-1}(W)$ is Λ_b-set in X, and $g(g^{-1}(W)) - g(X - g^{-1}(W)) = W$. Hence, all open sets in Y are of the form $g(V) - g(X - V)$, V is Λ_b-set in X. On the other hand, all sets of the form $g(V) - g(X - V)$, V is Λ_b-set in X, are open in Y from Corollary 4.21. \qed

Definition 4.17. A topological space $(X; \tau)$ is said to be V_b-normal if for any pair of disjoint V_b-sets $F1$ and $F2$ of X, there exist disjoint open sets U and V such that $F1 \subset U$ and $F2 \subset V$.

Theorem 4.18. Let (X, τ) and (Y, σ) be topological spaces with X is V_b normal and let $g : (X, \tau) \to (Y, \sigma)$ be a V_b-continuous weakly pre-V_b-closed surjective function. Then Y is normal.

Proof. Let K and M be disjoint closed subsets of Y. Then $g^{-1}(K)$, $g^{-1}(M)$ are disjoint V_b-sets of X. Since X is V_b-normal, there exist disjoint open sets V and W such that $g^{-1}(K) \subset V$ and $g^{-1}(M) \subset W$. Then $K \subset g(V) - g(X - V)$ and $M \subset g(W) - g(X - W)$. Further by Corollary 4.21, $g(V) - g(X - V)$ and $g(W) - g(X - W)$ are open sets in Y and clearly $(g(V) - g(X - V)) \cap (g(W)g(X - W)) = \emptyset$. This shows that Y is normal. \qed
References

