SOME FUNCTIONS VIA $\Lambda_b(V_b)$-SETS

G. Shanmugam1, N. Karthikeyan2, N. Rajesh3

$^1,^2$Department of Mathematics
Jeppiaar Engineering College
Chennai 600119, Tamilnadu, INDIA

3Department of Mathematics
Rajah Serfoji Govt. College
Thanjavur, 613005, Tamilnadu, INDIA

Abstract: In this paper, we introduce and study some new types of functions by the use of Λ_b-sets and V_b-sets.

AMS Subject Classification: 54C10, 54D10
Key Words: topological spaces, Λ_b-set, V_b-set, Λ_b-continuous functions, Λ_b-irresolute functions

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. The concept of b-open set in a topological space was introduced by Andrijevic in 1996 [1]. But one year later, this notion was also called γ-open sets due to El-Atik [7]. A subset A of a topological space (X, τ) is said to be b-open ($=\gamma$-open [7]) if $A \subset \text{Int}(\text{Cl}(A)) \cup \text{Cl}(\text{Int}(A))$, where $\text{Cl}(A)$ denotes the closure of A and $\text{Int}(A)$ denotes the interior of A in (X, τ). The complement A^c of a b-open
set A is called b-closed [1] ($=\gamma$ -closed [7]). The family of all b-open (resp. b-closed) sets in (X, τ) is denoted by $BO(X, \tau)$ (resp. $BC(X, \tau)$). The intersection of all b-closed sets containing A is called the b-closure of A [1] and is denoted by $bCl(A)$. Quite recently Caldas et. al. [3] used b-open sets to define and investigate the Λ_b-sets (resp. V_b-sets) which are intersection of b-open (resp. union of b-closed) sets. The purpose of the present paper is introduced and studied some new type of functions by using Λ_b-sets and V_b-sets. The family of all b-open sets of (X, τ) containing a point $x \in X$ is denoted by $BO(X, x)$.

2. Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, ν) (or simply X, Y and Z) will always denote topological spaces on which no separation axioms are assumed, unless explicitly stated.

Definition 2.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be b-continuous [7] ($=\gamma$ -continuous [7]) (resp. b-irresolute [7]($=\gamma$ -irresolute [7])) if for every $A \in \sigma$ (resp. $A \in BO(Y, \sigma)) f^{-1}(A) \in BO(X, \tau)$, or equivalently, f is b-continuous (resp. b-irresolute) if and only if for every closed set A (resp. b-closed set A) of (Y, σ), $f^{-1}(A) \in BC(X, \tau)$.

Definition 2.2. Let B be a subset of a topological space (X, τ). B is a Λ_b-set (resp. V_b-set) [3], if $B = B^{\Lambda_b}$ (resp. $B = B^{V_b}$), where:$B^{\Lambda_b} = \cap\{O : O \supseteq B, O \in BO(X, \tau)\}$ and $B^{V_b} = \cup\{F : F \subset B; F^c \in BO(X, \tau)\}$.

The family of all Λ_b-sets (resp. V_b of (X, τ) is denoted by τ^{Λ_b} (resp. τ^{V_b})

Proposition 2.3. For a space (X, τ), the following statements hold:
(i) \emptyset and X are Λ_b-sets and V_b-sets.
(ii) Every union of Λ_b-sets (resp.V_b-sets) is a Λ_b-set(resp.V_b-set).
(iii) Every intersection of Λ_b-sets (resp.V_b-sets) is a Λ_b-set (resp.V_b set).

Proposition 2.4. Let A, B for some $\{B : \alpha \in \Omega\}$ be subsets of a topological space (X, τ). Then the following properties are valid [3]:
(a) $B \subset B^{\Lambda_b}$;
(b) If $A \subset B$, then $A^{\Lambda_b} \subset B^{\Lambda_b}$;
(c) $B^{\Lambda_b} = B^{\Lambda_b}$;
(d) $(\bigcup_{\alpha \in \Omega} B)^{\Lambda_b} = \bigcup_{\alpha \in \Omega} B^{\Lambda_b}$;
(e) If $A \in BO(X, \tau)$, then $A = A^{\Lambda_b}$ (i.e, A is an Λ_b-set);
(f) $(B^c)^{\Lambda_b} = (B^{V_b})^c$;
(g) $B^{V_b} \subset B$;
(h) If $B \in BC(X, \tau)$, then $B = B^{V_b}$ (i.e., A is an V_b-set);
(i) $(\bigcup_{\alpha \in \Omega} B)^\Lambda_b \subset \bigcup_{\alpha \in \Omega} B^{\Lambda_b}$;
(j) $(\bigcup_{\alpha \in \Omega} B)^{V_b} \supseteq \bigcup_{\alpha \in \Omega} B^{V_b}$.

Definition 2.5. A topological space X is said to be:

(a) R_0-space [5] if for each open set V of X and each $x \in V$, $Cl(\{x\}) \subset V$
(b) b-R_0 [6] if every b-open set contains the b-closure of each of its singletons.
(c) b-T_1 [3] if to each pair of distinct points x, y of X there corresponds a b-open set A containing x but not y a b-open set B containing y but not x, or equivalently, (X, τ) is a b-T_1-space if and only if every singleton is b-closed.

3. Λ_b-Continuity and Λ_b-Irresoluteness

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be:

(i) Λ_b-continuous if $f^{-1}(V)$ is a Λ_b-set in (X, τ) for every open set V of (Y, σ),
(ii) Λ_b-irresolute if $f^{-1}(V)$ is a Λ_b-set in (X, τ) for every Λ_b-set V of (Y, σ),
(iii) pre-Λ_b-open (resp. pre-b-open) if $f(A)$ is a Λ_b-set (resp. b-open set) of
(Y, σ) for every Λ_b-set (resp. b-open set) A of (X, τ).

Proposition 3.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

(i) f is Λ_b-continuous,
(ii) $f : (X, \tau^{\Lambda_b}) \to (Y, \sigma)$ is continuous,
(iii) $f : (X, \tau^{V_b}) \to (Y, \sigma)$ is continuous.

Proof. Clear. □

Definition 3.3. (i): A filterbase Λ is said to be Λ_b-convergent to a point x in X if for any $U \in S^{\Lambda_b}$ containing x, there exists $B \in \Lambda$ such that $B \subset U$.
(ii): A filterbase Λ is said to be convergent to a point x in X if for any open set U of X containing x, there exists $B \in \Lambda$ such that $B \subset U$.

Theorem 3.4. If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ_b-continuous, then for each point $x \in X$ and each filterbase \mathcal{F} in X Λ_b-converging to x, the filter base $f(\mathcal{F})$ is convergent to $f(x)$.

Proof. Let $x \in X$ and \mathcal{F} be any filterbase in X Λ_b-converging to x. Since f is Λ_b-continuous, then for any open set V of (Y, σ) containing $f(x)$, there exists
there exists B to be strong Λ_b-filter base $f(U)$ containing x such that $f(U) \subset V$. Since Λ_b is Λ_b-converging to x, there exists $B \in \mathcal{F}$ such that $B \subset U$. This means that $f(B) \subset V$ and hence the filter base $f(\mathcal{F})$ is convergent to $f(x)$. \hfill \square

Definition 3.5. A sequence (x_n) is said to be Λ_b-convergent to a point x if for every Λ_b set V containing x, there exists an index x_0 such that for $n \geq n_0$, $x_n \in V$.

Theorem 3.6. If a function $f : (X, \tau) \to (Y, \sigma)$ is Λ_b-continuous, then for each point $x \in X$ and each net (x_n) which is Λ_b-convergent to x, the net $f(x_n)$ is convergent to $f(x)$.

Proof. The proof is similar to that of Theorem 4.15.

Recall that for a function $f : (X, \tau) \to (Y, \sigma)$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by $G(f)$.

Definition 3.7. A graph $G(f)$ of a function $f : (X, \tau) \to (Y, \sigma)$ is said to be strong Λ_b-set if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in S^{\Lambda_b}$ containing x and a closed set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 3.8. A graph $G(f)$ of a function $f : (X, \tau) \to (Y, \sigma)$ is strong Λ_b-set in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in S^{\Lambda_b}$ containing x and a closed set V of Y containing y such that $f(U) \cap V = \emptyset$.

Theorem 3.9. If $f : (X, \tau) \to (Y, \sigma)$ is a Λ_b-continuous function and (Y, σ) is a T_1-space, then $G(f)$ is strong Λ_b-set.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $y \neq f(x)$. Since Y is T_1 there exists an open set V in Y such that $f(x) \in V$ and $y \notin V$. Since f is Λ_b-continuous, there exist $U \in S^{\Lambda_b}$ containing x such that $f(U) \subset V$. Therefore, $f(U) \cap (Y \setminus V) = \emptyset$ and $Y \setminus V$ is closed subset of Y containing y. This show that $G(f)$ is strong Λ_b-set. \hfill \square

Definition 3.10. A topological space X is said to be Λ_b-connected if there does not exist disjoint Λ_b-set A and B such that $A \cup B = X$.

Theorem 3.11. If $f : (X, \tau) \to (Y, \sigma)$ is a Λ_b-continuous surjective function and X is Λ_b-connected, then Y is connected.

Proof. Follows from the definitions. \hfill \square

Definition 3.12. A collection $\{G_\alpha : \alpha \in \Delta\}$ is said to be Λ_b-cover of a subset A of a topological space (X, τ) if $A \subset \bigcup\{G_\alpha : X \setminus G_\alpha \in S^{\Lambda_b}, \alpha \in \Delta\}$.
Definition 3.13. A topological space X is said to be
(i) Λ_b-compact if every Λ_b-open cover of X has a finite subcover;
(ii) countably Λ_b-compact if every Λ_b-open countable cover of X has a finite subcover;
(iii) Λ_b-Lindelöf if every cover of X by Λ_b-open set has a countable subcover.

Theorem 3.14. If $f : (X, \tau) \to (Y, \sigma)$ is Λ_b-continuous surjection and (X, τ) is Λ_b-compact (resp. countably Λ_b-compact, Λ_b-Lindelöf), then Y is compact (resp. countably compact, Lindelöf).

Proof. Follows from the definitions.

Theorem 3.15. If $f : (X, \tau) \to (Y, \sigma)$ is a Λ_b-continuous injective function and (Y, σ) is a T_2-space, then (X, τ) is Λ_b-T_2-space.

Proof. For any pair of distinct points x any y in X, there exist distinct open sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since f is Λ_b-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are Λ_b-sets in X containing x any y, respectively. Therefore $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ because $U \cap V = \emptyset$. This show that (X, τ) is Λ_b-T_2.

Proposition 3.16. For a function $f : (X, \tau) \to (Y, \sigma)$ the following properties are equivalent:
(i) f is Λ_b-irresolute,
(ii) $f : (X, \tau^{\Lambda_b}) \to (Y, \sigma^{\Lambda_b})$, is continuous,
(iii) $f : (X, \tau^{V_b}) \to (Y, \sigma^{V_b})$, is continuous.

Proof. (i) \implies (ii) This is obvious. (ii) \implies (iii): Let B be any V_b-sets of (Y, σ). Then B^c is a Λ_b-sets of (Y, σ) and $f^{-1}(B^c)$ is a Λ_b-sets of (X, τ) (iii) \implies (i): Let B be any Λ_b-sets of (Y, σ) then B^c is a V_b-sets. Also $f^{-1}(B^c) = (f^{-1}(B))^c$ is a V_b-set. Thus $f^{-1}(B)$ is Λ_b-sets.

Theorem 3.17. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties hold.
(i) If f is b-irresolute, then it is Λ_b-irresolute;
(ii) If f is b-open and injective, then it is pre-Λ_b-open.

Proof. (i) Let B be a Λ_b-sets of (Y, σ). Since f is b-irrselotue, we have $f^{-1}(B) \subset (f^{-1}(B))^{\Lambda_b} = \{U | f^{-1}(B) \subset U \in BO(X, \tau)\} = \{f^{-1}(V) | B \subset V \in BO(Y, \sigma)\} = f^{-1}(\{V \subset V \in BO(Y, \sigma)\}) = (f^{-1}(B))^{\Lambda_b} = f^{-1}(B)$. Therefore, we obtain $f^{-1}(B) = (f^{-1}(B))^{\Lambda_b}$ which show that $f^{-1}(B)$ is a Λ_b-set. Consequently, f is Λ_b-irresolute.

(ii) Let A be a Λ_b-set of (X, τ). Since f is pre-b-open and injective. We have
If \(f : (X, \tau) \to (Y, \sigma) \) is bijective, \(b \)-irresolute and pre-\(b \)-closed, then

(i) for every \(V_b \)-set \(B \) of \((Y, \sigma) \), then \(f^{-1}(B) \) is a \(V_b \)-set of \((X, \tau) \)

(ii) for every \(V_b \)-set \(B \) of \((X, \tau) \), then \(f(B) \) is a \(V_b \)-set of \((Y, \sigma) \)

Proposition 3.19. (i) If \(f : (X, \tau) \to (Y, \sigma) \) is a \(\Lambda_b \)-irresolute function and \(g : (Y, \sigma) \to (Z, \gamma) \) is a \(\Lambda_b \)-continuous function, then the composition \(g \circ f : (X, \tau) \to (Z, \gamma) \) is \(\Lambda_b \)-continuous.

(ii) If \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \gamma) \) are both \(\Lambda_b \)-irresolute, then the composition \(g \circ f : (X, \tau) \to (Z, \gamma) \) is \(\Lambda_b \)-irresolute.

Proof. It follows directly from the definitions.

Definition 3.20. A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be \(V_b \)-closed if for each closed set \(F \) of \(X \), \(f(F) \) is a \(V_b \)-set of \((Y, \sigma) \).

Theorem 3.21. A function \(f : (X, \tau) \to (Y, \sigma) \) is \(V_b \)-closed if and only if for each subset \(S \) of \(Y \) and for each open set \(U \) containing \(f^{-1}(S) \), there is a \(\Lambda_b \)-set \(V \) of \(Y \) such that \(S \subset V \) and \(f^{-1}(V) \subset U \).

Proof.. Let \(S \) be a subset of \(Y \) and \(U \) be an open subset of \(X \) such that \(f^{-1}(S) \subset U \). Then, \(Y \setminus f(X \setminus U) = V \) (say), is a \(\Lambda_b \)-set containing \(S \) such that \(f^{-1}(V) \subset U \). Conversely, let \(F \) be an arbitrary closed set of \(X \). Then \(f^{-1}(Y \setminus f(F)) \subset X \setminus F \) and \(X \setminus F \) is open in \(X \). By hypothesis, there is a \(\Lambda_b \)-set \(V \) of \(Y \) such that \((Y \setminus f(F)) \subset V \) and \(f^{-1}(V) \subset X \setminus F \) hence \(Y \setminus V \subset f(F) \subset f(X \setminus f^{-1}(V)) \subset Y \setminus V \), which implies \(f(F) = Y \setminus V \). Since \(Y \setminus V \) is a \(V_b \)-set, \(f(F) \) is a \(V_b \)-set; hence \(f \) is a \(V_b \)-closed function.

We consider now some composition properties interms of \(V_b \)-sets.

Theorem 3.22.. Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \gamma) \) be two functions such that \(g \circ f : (X, \tau) \to (Z, \gamma) \) is \(V_b \)-closed. Then, (i) if \(f \) is continuous and surjective, then \(g \) is \(V_b \)-closed, (ii) if \(g \) is \(b \)-irresolute, pre-\(b \)-closed and bijective, then \(f \) is \(V_b \)-closed.

Proof. (i) Let \(F \) be an arbitrary closed set in \((X, \tau) \). Then \(f \) is a \(V_b \)-set in \((Y, \sigma) \). Since \(g \) is bijective, \(b \)-irresolute and pre-\(b \)-closed, \((g \circ f)(F) = g(f(F)) \) is a
V_b-set by Corollary 3.21(ii). (ii) The proof follows immediately from definitions. Regarding the restriction $f_{|A}$ of a function $f : (X, \tau) \to (Y, \sigma)$ to a subset A of X, we have the following:

Theorem 3.23. (i) If $f : (X, \tau) \to (Y, \sigma)$ is V_b-closed and A is a closed set in (X, τ), then its restriction $f_{|A} : (A, \tau_{|A}) \to (Y, \sigma)$ is V_b-closed. (ii) Let B be a V_b-set of (Y, σ) If $f : (X, \tau) \to (Y, \sigma)$ is V_b-closed, then $f_{|A} : (A, \tau_{|A}) \to (Y, \sigma)$ is V_b-closed, where $A = f^{-1}(B)$.

Proof. (i) Let F be a closed set of $(A, \tau_{|A})$. Since A is closed in (X, τ), F is closed in (X, τ) and $f_{|A}(F) = f(F)$ is a V_b-closed set of (Y, σ). Therefore, $f_{|A}$ is V_b-closed. (ii) Let F be a closed set of A. Then $F = A \cap H$ for some closed set H of (X, τ). By Proposition 2.3, we have $f(H) \cap B$ is a V_b-set in (Y, σ) since B is a V_b-set. Using $f_{|A}(F) = f(A \cap H) = f(H) \cap B$, $f_{|A}$ is V_b-closed.

Definition 3.24. A topological space (X, τ) is said to be T_b-space if $\tau_{\Lambda_b} = \tau_{V_b}$.

Theorem 3.25. For a topological space (X, τ), the following properties are equivalent:

(i) (X, τ) is a b-R_0 space;
(ii) (X, τ_{V_b}) is discrete;
(iii) (X, τ_{Λ_b}) is discrete;
(iv) For each $x \in X$, $\{x\}$ is a Λ_b-set of (X, τ);
(v) $P = (P)^V_b$ for each $P \in BO(X, \tau)$;
(vi) (X, τ) is a T_b-space;
(vii) (X, τ_{Λ_b}) is a R_0 space;

Proof. (i) \Rightarrow (ii): It is shown in Theorem 3.11 of [4] that (X, τ) is b-R_0 if and only if it is b-T_1. In [3], it is shown that if (X, τ) is b-T_1, then (X, τ_{Λ_b}) is discrete. (ii) \Rightarrow (iii): This is obvious. (iii) \Rightarrow (iv): For each $x \in X$, $\{x\}$ is τ_{Λ_b}-open and $\{x\}$ is a Λ_b-set of (X, τ). (iv) \Rightarrow (v): Let P be a b-open set of X. Let $y \in P^c$ then $(\{y\})_{\Lambda_b} \supset P^c$ by the assumption. By using Proposition 2.4, we have $P^c \supset \cup\{A_b(\{y\}) : y \in P^c\} = (P^c)_{\Lambda_b}^\Lambda$ and hence $P^c = (P^c)_{\Lambda_b}^\Lambda$. Then it follows from Proposition 4 that $P = (P^c)^V_b(v) \Rightarrow (vi)$: By (v), we have $BO(X, \tau) \subset \tau_{\Lambda_b}$. First we show that $\tau_{\Lambda_b} \subset \tau_{V_b}$. Let A be any Λ_b of (X, τ). Then $A = \cap\{V \mid A \subset V \in BO(X, x)\}$. Since $BO(X, \tau) \subset \tau_{V_b}$, By Proposition 4 we have $A \in \tau_{V_b}$ and $\tau_{\Lambda_b} \subset \tau_{V_b}$. Next let $A \in \tau_{V_b}$. Then $X \setminus A \in \tau_{\Lambda_b}$. Therefore $A \in \tau_{\Lambda_b}$ and $\tau_{V_b} \subset \tau_{\Lambda_b}$. Consequently, we obtain $\tau_{V_b} = \tau_{\Lambda_b}$ and (X, τ) is a T_b-space. (vi) \Rightarrow (vii) Suppose that $V \in \tau_{\Lambda_b}$ and $x \in V$. Since (X, τ) is a T_b-space, $V \in \tau_{V_b}$ and $V^c \in \tau_{\Lambda_b}$. Since $\{x\} \cap V^c = \emptyset$. Cl_{\tau_{\Lambda_b}}(\{x\}) \cap V^c = \emptyset$
and $\text{Cl}_{\tau_\Lambda_b}(\{x\}) \subset V$ where $\text{Cl}_{\tau_\Lambda_b}(\{x\})$ denotes the closure of $\{x\}$ in (X, τ_Λ_b).

\((\text{vii}) \Rightarrow (i)\): Let $V \in BO(X, \tau)$ and $x \in V$. Since $BO(X, \tau) \subset \tau_\Lambda_b$, by (vii), $\text{Cl}_{\tau_\Lambda_b}(\{x\}) \subset V$. Since $\text{Cl}_{\tau_\Lambda_b}(\{x\}) \subset \tau V_b$, we have $\text{Cl}_{\tau_\Lambda_b}(\{x\}) = \bigcup \{F : F \in BC(X, \tau), F \subset \text{Cl}_{\tau_\Lambda_b}(\{x\})\}$ and $x \in \text{Cl}_{\tau_\Lambda_b}(\{x\})$. There exist $F \in BC(X, \tau)$ such that $x \in X$ and hence we have $b\text{Cl}(\{x\}) \subset F \subset \text{Cl}_{\tau_\Lambda_b}(\{x\}) \subset V$. This show that (X, τ) is a b-R_0-space.

Corollary 3.26. If (X, τ) is a b-R_0-space, then (X, τ^Λ_b) is a R_0-space.

Definition 3.27. A function $f : (X, \tau) \to (Y, \sigma)$ is called a Λ_b-homeomorphism if it is Λ_b-irresolute, pre-Λ_b-open and bijective.

Theorem 3.28. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties hold:

(i) If f is Λ_b- irresolute injection and (Y, σ) is a T_b-space, then (X, τ) is a T_b-space.

(ii) If f is pre-Λ_b- open surjection and (X, τ) is a T_b-space, then (Y, σ) is a T_b-space.

(iii) Let f be Λ_b- homeomorphism. Then (X, τ) is a T_b-space, if and only if (Y, σ) is a T_b-space.

Proof. (i) This follows from Theorem 4.17. (ii) This is analogous to the proof of (i). (iii) This is an immediate consequence of (i) and (ii).

4. Weakly Pre-Λ_b-Open Functions

Definition 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly pre-Λ_b-open if the image of every Λ_b-set set in X is open in Y.

Clearly, every pre-Λ_b-open function is weakly pre-Λ_b-open. But the converse is not true in general.

Example 4.2. Let $X = \{(a, b, c)\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then the identity function f on X is weakly pre-Λ_b-open but not pre-Λ_b-open.

Remark 4.3. It is evident that, the concepts weakly pre-Λ_b-openness and Λ_b-continuity are coincide if the function is a bijective.

Theorem 4.4. A function $f : (X, \tau) \to (Y, \sigma)$ is weakly pre-Λ_b-open if and only if for every subset U of X, $f(\text{Int}_{\tau_\Lambda_b}(U)) \subset \text{Int}(f(U))$.
Proof. Let f be weakly pre-Λ_b-open map. Now we have $\text{Int}(f(U)) \subset U$ and $\text{Int}_{\tau_{\Lambda_b}}(U)$ is a Λ_b-set. Hence we obtain that $f(\text{Int}_{\tau_{\Lambda_b}}(U)) \subset f(U)$. As $f(\text{Int}_{\tau_{\Lambda_b}}(U))$ is open, then $f(\text{Int}_{\tau_{\Lambda_b}}(U)) \subset \text{Int}(f(U))$. Conversely, assume that U be a Λ_b-set in X. Then $f(U) = f(\text{Int}_{\tau_{\Lambda_b}}(U)) \subset \text{Int}(f(U))$. But usually $\text{Int}(f(U)) \subset f(U)$. Consequently $f(U) = \text{Int}(f(U))$ and hence f is weakly pre-Λ_b-open.

Lemma 4.5. A function $f : (X, \tau) \to (Y, \sigma)$ is weakly pre-Λ_b-open then $\text{Int}_{\tau_{\Lambda_b}}(f^{-1}(G)) \subset f^{-1}(\text{Int}(G))$ for every subset $G \subset Y$.

Proof. Let G be any arbitrary subset of Y. Then $\text{Int}_{\tau_{\Lambda_b}}(f^{-1}(G))$ is a Λ_b-set in X and f is weakly pre-Λ_b-open, then $f(\text{Int}_{\tau_{\Lambda_b}}(f^{-1}(G))) \subset \text{Int}(f^{-1}(G)) \subset \text{Int}(G)$. Thus $\text{Int}_{\tau_{\Lambda_b}}(f^{-1}(G)) \subset f^{-1}(\text{Int}(G))$.

Definition 4.6. A subset S is called a Λ_b-neighbourhood of a point of x of X if there exist a Λ_b-set U such that $x \in U \subset S$.

Theorem 4.7. For a function $f : (X, \tau) \to (Y, \sigma)$, the following are equivalent:

(i) f is weakly pre-Λ_b-open;
(ii) For each subset U of X, $f(\text{Int}_{\tau_{\Lambda_b}}(U)) \subset \text{Int}(f(U))$;
(iii) For each $x \in X$ and each Λ_b-neighbourhood U of x in X, there exists a neighbourhood V of $f(x)$ in Y such that $V \subset f(U)$.

Proof. $(i) \Rightarrow (ii)$: It follows from Theorem 4.4. $(ii) \Rightarrow (iii)$: Let $x \in X$ and U be an arbitrary Λ_b-neighbourhood of x in X. Then there exists a Λ_b-set V in X such that $x \in V \subset U$. Then by (ii), we have $f(V) = f(\text{Int}_{\tau_{\Lambda_b}}(V)) \subset \text{Int}(f(V))$ and hence $f(V) = \text{Int}(f(V))$. Therefore, it follows that $f(V)$ is open in Y such that $f(x) \in f(V) \subset f(U)$. $(iii) \Rightarrow (i)$: Let U be an arbitrary Λ_b-set in X, Then for each $y \in f(U)$, by (iii) there exists a neighbourhood V_y of y in Y such that $V_y \subset f(U)$. As V_y is a neighbourhood of y, there exists an open set W_y in Y such that $y \in W_y \subset V_y$. Thus, $f(U) = \cup\{W_y : y \in f(U)\}$ which is an open set in Y. This implies that f is weakly pre-Λ_b-open function.

Theorem 4.8. A function $f : (X, \tau) \to (Y, \sigma)$ is weakly pre-Λ_b-open if and only if for any subset B of Y and for any V_b-set F of X containing $f^{-1}(B)$, there exists a closed set G of Y containing B such that $f^{-1}(G) \subset F$.

Proof. Similar to the proof of Theorem 3.24.

Theorem 4.9. A function $f : (X, \tau) \to (Y, \sigma)$ is weakly pre-Λ_b-open if and only if $f(\text{Cl}(B)) \subset \text{Cl}_{\tau_{\Lambda_b}}(f(B))$ for every subset B of Y.
Proof. Suppose that f is weakly pre-Λ_b-open. For any subset B of Y, $f^{-1}(B) \subseteq \text{Cl}_{\Lambda_b}(f^{-1}(B))$. Therefore by Theorem 4.8, there exists a closed set F in Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq \text{Cl}_{\Lambda_b}(f^{-1}(B))$. Therefore, we obtain $f^{-1}(\text{Cl}(B)) \subseteq f^{-1}(F) \subseteq \text{Cl}_{\Lambda_b}(f^{-1}(B))$. Conversely, let $B \subseteq Y$ and F be a Λ_b-set of X containing $f^{-1}(B)$. Put $W = \text{Cl}(B)$, then we have $B \subseteq W$ and W is closed and $f^{-1}(W) \subseteq \text{Cl}_{\Lambda_b}(f^{-1}(B)) \subseteq F$. Then by Theorem 4.11, f is weakly pre-Λ_b-open. \hfill \square

Lemma 4.10. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two functions and $g \circ f : X \to Z$ is weakly pre-Λ_b-open. If g is continuous injective, then f is weakly pre-Λ_b-open.

Proof. Let U be a Λ_b-set in X, then $(g \circ f)(U)$ is open in Z, since $g \circ f$ is weakly pre-Λ_b-open. Again g is an injective continuous function, $f(U) = g^{-1}(g \circ f(U))$ is open in Y. This show that f is weakly pre-Λ_b-open. \hfill \square

Theorem 4.11. If $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are two weakly pre-V_b-closed functions, then $g \circ f : X \to Z$ is a weakly pre-V_b-closed function.

Proof. Obvious. \hfill \square

Furthermore, we have the following.

Theorem 4.12. If $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be any two functions. Then

(i) If f is V_b-closed and g is weakly pre-V_b-closed, then $g \circ f$ is closed;

(ii) If f is weakly pre-V_b-closed and g is V_b-closed, then $g \circ f$ is pre-V_b-closed;

(iii) If f is V_b-closed and g is weakly pre-V_b-closed, then $g \circ f$ is weakly pre-V_b-closed.

Proof. Obvious. \hfill \square

Theorem 4.13. If $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be any two functions such that $g \circ f : X \to Z$ is weakly pre-Λ_b-closed.

(i) If f is V_b-irresolute surjective, then g is closed.

(ii) If g is V_b-continuous injective, then f is pre-V_b-closed.

Proof. (i) Suppose F is an arbitrary V_b-closed set in Y. As f is V_b-irresolute, $f^{-1}(F)$ is V_b-set in X. Since $g \circ f$ is weakly pre-V_b-closed and f is surjective, $(g \circ f(f^{-1}(F))) = g(F)$, which is closed in Z. This implies that g is a closed function. (ii) Suppose F is any V_b-closed set in X. Since $g \circ f$ closed.
is weakly pre-V_b-closed, $(g \circ f)(F)$ is closed in Z. Again g is a V_b-continuous injective function, $g^{-1}(g \circ f(F)) = f(F)$, which is V_b-closed in Y. This shows that f is pre-V_b-closed.

Theorem 4.14. Let (X, τ) and (Y, σ) be topological spaces. Then the function $g : (X, \tau) \rightarrow (Y, \sigma)$ is a weakly pre-V_b-closed if and only $g(X)$ is closed in Y and $g(V) - g(X - V)$ is open in $g(X)$ whenever V is Λ_b-set in X.

Proof. Necessity: Suppose $g : (X, \tau) \rightarrow (Y, \sigma)$ is a weakly pre-V_b-closed function. Since X is Λ_b-set, $g(X)$ is closed in Y and $g(V) - g(X - V) = g(X) - g(X - V)$ is open in $g(X)$ when V is Λ_b-set in X. Sufficiency: Suppose $g(X)$ is closed in Y, $g(V) - g(X - V)$ is open in $g(X)$ when V is Λ_b-set in X, and let C be closed in X. Then $g(C) = g(X) - (g(X - C) - g(C))$ is closed in $g(X)$ and hence, closed in Y.

Corollary 4.15. Let (X, τ) and (Y, σ) be topological spaces. Then a surjective $g : (X, \tau) \rightarrow (Y, \sigma)$ is a weakly pre-Λ_b-closed if and only if $g(V) - g(X - V)$ is open in Y whenever U is Λ_b-set in X.

Corollary 4.16. Let (X, τ) and (Y, σ) be topological spaces and let $g : (X, \tau) \rightarrow (Y, \sigma)$ be a Λ_b-continuous weakly pre-Λ_b-closed surjective function. Then the topology on Y is $\{g(V) - g(X - V) : V$ is V_b-set in $X\}$.

Proof. Let W be open in Y. Then $g^{-1}(W)$ is Λ_b-set in X, and $g(g^{-1}(W)) - g(X - g^{-1}(W)) = W$. Hence, all open sets in Y are of the form $g(V) - g(X - V)$, V is Λ_b-set in X. On the other hand, all sets of the form $g(V) - g(X - V)$, V is Λ_b-set in X, are open in Y from Corollary 4.21.

Definition 4.17. A topological space $(X; \tau)$ is said to be V_b-normal if for any pair of disjoint V_b-sets F_1 and F_2 of X, there exist disjoint open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Theorem 4.18. Let (X, τ) and (Y, σ) be topological spaces with X is V_b normal and let $g : (X, \tau) \rightarrow (Y, \sigma)$ be a V_b-continuous weakly pre-V_b-closed surjective function. Then Y is normal.

Proof. Let K and M be disjoint closed subsets of Y. Then $g^{-1}(K), g^{-1}(M)$ are disjoint V_b-sets of X. Since X is V_b-normal, there exist disjoint open sets V and W such that $g^{-1}(K) \subset V$ and $g^{-1}(M) \subset W$. Then $K \subset g(V) - g(X - V)$ and $M \subset g(W) - g(X - W)$. Further by Corollary 4.21, $g(V) - g(X - V)$ and $g(W) - g(X - W)$ are open sets in Y and clearly $(g(V) - g(X - V)) \cap (g(W)g(X - W)) = \emptyset$. This shows that Y is normal.
References

