THE GENERATORS OF THE 2-CLASS GROUP OF SOME FIELDS \(\mathbb{Q}(\sqrt{pq_1q_2}, i) \):
CORRECTION TO THEOREM 3 OF [5]

Abdelmalek Azizi\(^1\)\(^\S\), Abdelkader Zekhnini\(^2\), Mohammed Taous\(^3\)

\(^1\)Department of Mathematics
Faculty of Sciences
Mohammed First University
Oujda, MOROCCO

\(^2\)Department of Mathematics
Pluridisciplinary Faculty
Mohammed First University
Nador, MOROCCO

\(^3\)Department of Mathematics
Faculty of Science and Technology
Moulay Ismail University
Errachidia, MOROCCO

Abstract: Let \(p, q_1 \) and \(q_2 \) be different primes satisfying the condition that the 2-class group of the field \(\mathbb{k} = \mathbb{Q}(\sqrt{pq_1q_2}, i) \) is of type \((2, 2, 2)\). In this paper, we are interested to give the generators of \(C_{\mathbb{k}, 2} \), the 2-class group of \(\mathbb{k} \), which corrects the Theorem 3 of A. Azizi, A. Zekhnini and M. Taous: On the generators of the 2-class group of the field \(\mathbb{k} = \mathbb{Q}(\sqrt{d}, i) \), IJPAM, Volume 81, No. 5 (2012), 773-784.

AMS Subject Classification: 11R11, 11R29, 11R32, 11R37
Key Words: 2-class group, class group, biquadratic field, Hilbert class field

Received: March 31, 2015

\(^\S\)Correspondence author
1. Introduction

Let k be an algebraic number field and let $C_{k,2}$ denote its 2-class group, that is the 2-Sylow subgroup of the ideal class group C_k of k. The structure and the generators of $C_{k,2}$ play an important role in Number Theory, in fact they can help to determine the structure and the generators of the maximal unramified pro-2 extension of k, and they also help to solve the capitulation problem of the 2-ideal classes of k in its unramified extensions see [6, 7, 8, 9, 10, 11, 12, 16, 17].

Let $k = \mathbb{Q}(\sqrt{d}, i)$, where d is a square-free integer. In [5], we determined the generators of $C_{k,2}$ whenever it is of type (2, 2, 2), but Theorem 3 is false, the purpose of this paper is to correct this Theorem.

2. Preliminaries

Let p, q_1 and q_2 be different primes such that $p \equiv 1 \pmod{4}$ and $q_1 \equiv q_2 \equiv 3 \pmod{4}$. Put $d = pq_1q_2$, according to [13], $C_{k,2}$ is of type (2, 2, 2) if and only if p, q_1, q_2 satisfy the following two conditions:

\begin{align*}
A: & \quad p \equiv -q_1 \equiv -q_2 \equiv 1 \pmod{4} \quad \text{and} \quad \left(\frac{2}{p}\right) = \left(\frac{q_1}{q_2}\right) = -\left(\frac{q_2}{q_1}\right) = 1. \\
B: & \quad \text{One of the following three conditions is satisfied:} \\
& \quad \text{(I)} \quad \left(\frac{p}{q_1}\right) \left(\frac{p}{q_2}\right) = -1 \quad \text{and} \quad \left(\frac{2}{q_1}\right) = \left(\frac{2}{q_2}\right) = -1. \\
& \quad \text{(II)} \quad \left(\frac{p}{q_1}\right) \left(\frac{p}{q_2}\right) = -1, \quad \left(\frac{2}{q_1}\right) = 1 \quad \text{and} \quad \left(\frac{2}{q_2}\right) = -1. \\
& \quad \text{(III)} \quad \left(\frac{p}{q_1}\right) = \left(\frac{p}{q_2}\right) = -1 \quad \text{and} \quad \left(\frac{2}{q_1}\right) \left(\frac{2}{q_2}\right) = -1.
\end{align*}

Definition 1. Let p, q_1 and q_2 be different primes satisfying the condition A above.

1. p, q_1 and q_2 are called of type $B(I)(1)$ if the following conditions hold: $\left(\frac{p}{q_1}\right) = -\left(\frac{p}{q_2}\right) = 1$ and $\left(\frac{2}{q_1}\right) = \left(\frac{2}{q_2}\right) = -1$.

2. p, q_1 and q_2 are called of type $B(I)(2)$ if the following conditions hold: $\left(\frac{p}{q_2}\right) = -\left(\frac{p}{q_1}\right) = 1$ and $\left(\frac{2}{q_1}\right) = \left(\frac{2}{q_2}\right) = -1$.

3. p, q_1 and q_2 are called of type $B(II)(1)$ if the following conditions hold: $\left(\frac{p}{q_1}\right) = -\left(\frac{p}{q_2}\right) = 1$ and $\left(\frac{2}{q_1}\right) = -\left(\frac{2}{q_2}\right) = 1$.

(4) \(p, q_1 \) and \(q_2 \) are called of type \(B(II)(2) \) if the following conditions hold:
\[
\left(\frac{p}{q_2} \right) = -\left(\frac{p}{q_1} \right) = 1 \quad \text{and} \quad \left(\frac{2}{q_1} \right) = -\left(\frac{2}{q_2} \right) = 1.
\]

Lemma 2. Let \(d \equiv 1 \pmod{4} \) be a positive square free integer and \(\varepsilon_d = x + y\sqrt{d} \) be the fundamental unit of \(\mathbb{Q}(\sqrt{d}) \). Assume \(N(\varepsilon_d) = 1 \), then

1. \(x + 1 \) and \(x - 1 \) are not squares in \(\mathbb{N} \) i.e. \(2\varepsilon_d \) is not a square in \(\mathbb{Q}(\sqrt{d}) \).

2. For all prime \(p \) dividing \(d \), \(p(x + 1) \) and \(p(x - 1) \) are not squares in \(\mathbb{N} \).

Proof. 1. As \(d \equiv 1 \pmod{4} \), then by [13, Corollaire 3.2] the unit index of \(\mathbb{Q}(\sqrt{d}, i) \) is equal to 1, hence by [1, Applications (ii)] we get that \(2\varepsilon_d \) is not a square in \(\mathbb{Q}(\sqrt{d}) \), this is equivalent to \(x + 1 \) and \(x - 1 \) are not squares in \(\mathbb{N} \).

2. Assume \(p(x + 1) \) or \(p(x - 1) \) is a square in \(\mathbb{N} \), then, by the decomposition uniqueness in \(\mathbb{Z} \), there exist \(y_1, y_2 \) in \(\mathbb{Z} \) such that
\[
\begin{align*}
\left\{ \begin{array}{l}
y = y_1y_2, \\
d = pd^\prime;
\end{array} \right.
\end{align*}
\]

such that \(p(x + 1) = p^2y_1^2 \) and \(p(x - 1) = p^2y_2^2 + 2p \). This in turn yields that \(p^2(x^2 - 1) = p^2y_1^2(p^2y_2^2 + 2p) \); as \(x^2 - 1 = y^2d \), so we get \(y^2d = y_1^2(p^2y_2^2 + 2p) \), and \(y_2d = p^2y_2^2 + 2p \). Since \(d \equiv 1 \pmod{4} \) and \(p \equiv \pm 1 \pmod{4} \), we deduce that \(\mp 2 \equiv y_1^2 - y_2^2 \pmod{4} \). On the other hand, we know that for all \(a \in \mathbb{Z} \), \(a^2 \equiv 0 \) or \(1 \pmod{4} \), thus \(\mp 2 \equiv 0, 1 \) or \(-1 \pmod{4} \). Which is absurd. \(\square \)

Let \(p, q_1 \) and \(q_2 \) be different primes satisfying the condition \(A \) above. As the norm of \(\varepsilon_{pq_1q_2} = x + y\sqrt{pq_1q_2} \), the fundamental unit of \(\mathbb{Q}(\sqrt{pq_1q_2}) \), is 1, then by the decomposition uniqueness in \(\mathbb{Z} \), each of the numbers \(x \pm 1, 2(x \pm 1), p(x \pm 1), q_1(x \pm 1), q_2(x \pm 1), 2p(x \pm 1), 2q_1(x \pm 1), 2q_2(x \pm 1) \) and \(2pq_1q_2(x \pm 1) \) can be a square in \(\mathbb{N} \).

Lemma 3. Let \(p, q_1 \) and \(q_2 \) be different primes satisfying the condition \(A \). Let \(\varepsilon_{pq_1q_2} = x + y\sqrt{pq_1q_2} \) be the fundamental unit of \(\mathbb{Q}(\sqrt{pq_1q_2}) \).

1. If \(p, q_1 \) and \(q_2 \) are of type \(B(I)(1) \) or \(B(II)(1) \), then only \(2q_1(x + 1) \) (i.e. \(2pq_1(x - 1) \)) is a square in \(\mathbb{N} \).

2. If \(p, q_1 \) and \(q_2 \) are of type \(B(I)(2) \) or \(B(II)(2) \), then only \(2q_2(x - 1) \) (i.e. \(2pq_1(x + 1) \)) is a square in \(\mathbb{N} \).

3. If \(p, q_1 \) and \(q_2 \) are of type \(B(III) \), then only \(2p(x - 1) \) (i.e. \(2q_1q_2(x + 1) \)) is a square in \(\mathbb{N} \).
Proof. As \(pq_1q_2 \equiv 1 \, (\mod 4) \) and \(N(\varepsilon_{pq_1q_2}) = 1 \), then Lemma 2 implies that \(x \pm 1, p(x \pm 1), q_1(x \pm 1) \) and \(q_2(x \pm 1) \) are not squares in \(\mathbb{N} \). On the other hand, Lemma 5 of [2] yields that \(2(x \pm 1) \) and \(2pq_1q_2(x \pm 1) \) are not squares in \(\mathbb{N} \). Hence only \(2p(x \pm 1), 2q_1(x \pm 1) \) and \(2q_2(x \pm 1) \) can be squares in \(\mathbb{N} \).

Suppose \(p, q_1 \) and \(q_2 \) are of type \(B(1) \). If \(2p(x \pm 1) \) is a square in \(\mathbb{N} \), then, by the decomposition uniqueness of \(x \pm 1 \) in \(\mathbb{Z} \), there exist \(y_1, y_2 \) in \(\mathbb{Z} \) such that

\[
\begin{aligned}
x \pm 1 &= 2py_1^2, \\
y &= 2y_1y_2;
\end{aligned}
\]

from which we deduce that \(\left(\frac{q_1q_2}{p} \right) = 1 \), but this contradicts the fact that \(\left(\frac{q_1q_2}{p} \right) = -1 \).

Similarly, if we assume \(2q_2(x \pm 1) \) is a square in \(\mathbb{N} \), we get

\[
\begin{aligned}
x \pm 1 &= 2q_2y_1^2, \\
y &= 2y_1y_2;
\end{aligned}
\]

which implies that \(\left(\frac{q_2}{p} \right) = \left(\frac{2}{p} \right) \), hence \(\left(\frac{q_2}{p} \right) = 1 \), which is absurd.

Finally, if \(2q_1(x - 1) \) is a square in \(\mathbb{N} \), then proceeding similarly we get \(\left(\frac{q_1}{q_2} \right) = -1 \), which is absurd. So the result.

The other cases are proved similarly.

We close this section by the following lemmas.

Lemma 4 ([19]). Let \(p_1, p_2, \ldots, p_n \) be distinct primes and for each \(j \), let \(e_j = \pm 1 \). Then there exist infinitely many primes \(l \) such that \(\left(\frac{p_j}{l} \right) = e_j \), for all \(j \).

Lemma 5 ([18], p. 205). If \(\mathcal{H} \) is an unramified ideal in some extension \(\mathbb{K}/k \) = \(k(\sqrt{x})/k \), then the quadratic residue symbol is given by the Artin symbol \(\varphi = \left(\frac{\mathbb{K}(\sqrt{x})/k}{\mathcal{H}} \right) \) as follows: \(\left(\frac{x}{\mathcal{H}} \right) = \sqrt{x}^{\varphi - 1} \).

3. Main Result

Let \(F = \mathbb{Q}(i) \) and denote by \(Am(k/F) \) the group of the ambiguous classes of \(k/F \) and by \(Am_s(k/F) \) its subgroup generated by the strongly ambiguous classes. As \(p \equiv 1 \, (\mod 4) \), so there exist \(e \) and \(f \) in \(\mathbb{N} \) such that \(p = e^2 + 4f^2 = \pi_1\pi_2 \). Put \(\pi_1 = e + 2if \) and \(\pi_2 = e - 2if \). Let \(\mathcal{H}_1, \mathcal{H}_2, \mathcal{Q}_1 \) and \(\mathcal{Q}_2 \) be the prime ideals of \(k \) above \(\pi_1, \pi_2, q_1 \) and \(q_2 \) respectively. It is easy to see that \(\mathcal{H}_j^2 = (\pi_j) \)
Thus Formula (3) allows us to deduce that the following formula (see for example [15]):

\[\text{If } q \in \mathbb{Q}, \text{ then } \mathcal{H}_j = (\pi_j), \text{ where } 1 \leq j \leq 2, \text{ and since also } \sqrt{e^2 + (2f)^2} = \sqrt{p} \notin \mathbb{Q}(\sqrt{pq_1q_2}), \text{ so according to [5, Proposition 1]} \mathcal{H}_j \text{ is not principal in } \mathbb{k}.

From Lemma 3 we get the following assertions:

• If \(p, q_1 \) and \(q_2 \) are of type \(B(I)(1) \) or \(B(II)(1) \), then \(2q_1(x+1) \) and \(2pq_2(x-1) \) are squares in \(\mathbb{N} \), so Remark 1 of [5] implies that \(\mathcal{Q}_1 \) and \(\mathcal{H}_1\mathcal{H}_2\mathcal{Q}_2 \) are principal in \(\mathbb{k} \).

• If \(p, q_1 \) and \(q_2 \) are of type \(B(I)(2) \) or \(B(II)(2) \), then \(2q_2(x-1) \) and \(2pq_1(x+1) \) are squares in \(\mathbb{N} \), so Remark 1 of [5] implies that \(\mathcal{Q}_2 \) and \(\mathcal{H}_1\mathcal{H}_2\mathcal{Q}_1 \) are principal in \(\mathbb{k} \).

• If \(p, q_1 \) and \(q_2 \) are of type \(B(III) \), then \(2p(x-1) \) and \(2q_1q_2(x+1) \) are squares in \(\mathbb{N} \), so Remark 1 of [5] implies that \(\mathcal{H}_1\mathcal{H}_2 \) and \(\mathcal{Q}_1\mathcal{Q}_2 \) are squares in \(\mathbb{k} \) and \(\mathcal{Q}_1, \mathcal{Q}_2 \) are not. Moreover, as \((\mathcal{H}_1\mathcal{Q}_1)^2 = (\pi_1q_1) \) and \(q_1\sqrt{p} \notin \mathbb{Q}(\sqrt{d}) \), so [5, Proposition 1] implies that \(\mathcal{H}_1\mathcal{Q}_1 \) is not principal in \(\mathbb{k} \).

According to the ambiguous class number formula (see [14]) we have:

\[
|\text{Am}(\mathbb{k}/F)| = \frac{h(F)2^{t-1}}{|E_F : E_F \cap N_{\mathbb{k}/F}(\mathbb{k}^x)|},
\]

(1)

where \(h(F) \) is the class number of \(F \) and \(t \) is the number of finite and infinite primes of \(F \) ramified in \(\mathbb{k}/F \). Moreover as the class number of \(F \) is equal to 1, so the formula (1) yields that

\[
|\text{Am}(\mathbb{k}/F)| = 2^r,
\]

(2)

where \(r = \text{rank}_{\mathbb{C}}(\mathbb{k},2) = t - e - 1 \) and \(2^e = |E_F : E_F \cap N_{\mathbb{k}/F}(\mathbb{k}^x)| \) (see for example [20]). The relation between \(|\text{Am}(\mathbb{k}/F)| \) and \(|\text{Am}_s(\mathbb{k}/F)| \) is given by the following formula (see for example [15]):

\[
\frac{|\text{Am}(\mathbb{k}/F)|}{|\text{Am}_s(\mathbb{k}/F)|} = [E_F \cap N_{\mathbb{k}/F}(\mathbb{k}^x) : N_{\mathbb{k}/F}(E_{\mathbb{k}})].
\]

(3)

Since \(r = \text{rank}_{\mathbb{C}}(\mathbb{k},2) = 3 \), so Formula (2) implies that \(|\text{Am}(\mathbb{k}/\mathbb{Q}(i))| = 2^3 = 8 \). Moreover, we know that \(p \equiv 1 \pmod{8} \), hence by [21] \(i \) is a norm in \(\mathbb{k}/\mathbb{Q}(i) \), thus Formula (3) allows us to deduce that

\[
\frac{|\text{Am}(\mathbb{k}/\mathbb{Q}(i))|}{|\text{Am}_f(\mathbb{k}/\mathbb{Q}(i))|} = [E_{\mathbb{Q}(i)} \cap N_{\mathbb{k}/\mathbb{Q}(i)}(\mathbb{k}^x) : N_{\mathbb{k}/\mathbb{Q}(i)}(E_{\mathbb{k}})] = [< i > : < -1 >] = 2
\]

\((E_{\mathbb{k}} = \langle i, \varepsilon_{pq_1q_2} \rangle \text{ since } x \pm 1 \text{ is not a square in } \mathbb{N} \text{ see [3]), so } |\text{Am}_s(\mathbb{k}/\mathbb{Q}(i))| = 4 \).

We conclude that:
• If \(p, q_1 \) and \(q_2 \) are of type \(B(III) \), then \(\text{Am}_s(\mathbb{K}/\mathbb{Q}(i)) = \langle [\mathcal{H}_1], [\mathcal{Q}_1] \rangle \).

• Else, \(\text{Am}_s(\mathbb{K}/\mathbb{Q}(i)) = \langle [\mathcal{H}_1], [\mathcal{H}_2] \rangle \).

Therefore there exists in \(\mathbb{K} \) an unambiguous ideal \(\mathcal{I} \) of order 2 such that

\[
\begin{cases}
\mathcal{C}l_2(\mathbb{K}) = \langle [\mathcal{H}_1], [\mathcal{Q}_1], [\mathcal{I}] \rangle & \text{if } p, q_1 \text{ and } q_2 \text{ are of type } B(III), \\
\mathcal{C}l_2(\mathbb{K}) = \langle [\mathcal{H}_1], [\mathcal{H}_2], [\mathcal{I}] \rangle & \text{otherwise}.
\end{cases}
\]

By Chebotarev theorem, \(\mathcal{I} \) can always be chosen as a prime ideal of \(\mathbb{K} \) above a prime \(l \) in \(\mathbb{Q} \), which splits completely in \(\mathbb{K} \). So we can determine \(\mathcal{I} \) by using Lemma 4.

(a) Suppose \(p, q_1 \) and \(q_2 \) are of type \(B(III) \). Let \(l \equiv 1 \pmod{4} \) be a prime integer such that \(\left(\frac{pq_1q_2}{l} \right) = 1 \) and \(\left(\frac{l}{2} \right) = -1 \). Thus \(l \) splits completely in \(\mathbb{K} \), let \(\mathcal{I} \) be a prime ideal of \(\mathbb{K} \) lies above \(l \), which is an unambiguous ideal. Let us prove that \(\mathcal{I}, \mathcal{Q}_1\mathcal{I}, \mathcal{H}_1\mathcal{I} \) and \(\mathcal{Q}_1\mathcal{H}_1\mathcal{I} \) are not principal in \(\mathbb{K} \).

• \(\mathcal{I} \) is not principal in \(\mathbb{K} \), otherwise we will have \(N_{\mathbb{K}/\mathbb{Q}(\sqrt{pq_1q_2})}(\mathcal{I}) \) principal in \(\mathbb{Q}(\sqrt{pq_1q_2}) \), so there exist \(\alpha_1, \alpha_2 \) in \(\mathbb{Q} \) such that \(l = \pm(\alpha_1^2 - \alpha_2^2pq_1q_2) \). This implies that \(\left(\frac{l}{2} \right) = 1 \); which is absurd.

• If \(\mathcal{Q}_1\mathcal{I} \) is principal in \(\mathbb{K} \), then \(N_{\mathbb{K}/\mathbb{Q}(\sqrt{pq_1q_2})}(\mathcal{Q}_1\mathcal{I}) = \mathbb{Q}^2N_{\mathbb{K}/\mathbb{Q}(\sqrt{pq_1q_2})}(\mathcal{I}) \) is also principal in \(\mathbb{Q}(\sqrt{pq_1q_2}) \) (note that the ideal of \(\mathbb{Q}(\sqrt{pq_1q_2}) \) above \(q_1 \) remains inert in \(\mathbb{K} \)). On the other hand, under our conditions \(\mathbb{Q}(\sqrt{pq_1q_2}) \) is cyclic of order 2 (see [13]), thus \(N_{\mathbb{K}/\mathbb{Q}(\sqrt{pq_1q_2})}(\mathcal{I}) \) is principal in \(\mathbb{Q}(\sqrt{pq_1q_2}) \), this implies the contradiction \(\left(\frac{l}{2} \right) = 1 \).

• If \(\mathcal{H}_1\mathcal{I} \) is principal in \(\mathbb{K} \), then \(N_{\mathbb{K}/\mathbb{Q}(\sqrt{pq_1q_2})}(\mathcal{H}_1\mathcal{I}) \) is principal in \(\mathbb{Q}(\sqrt{pq_1q_2}) \). So there exist \(\alpha_1, \alpha_2 \) in \(\mathbb{Q} \) such that \(pl = \pm(\alpha_1^2 - \alpha_2^2pq_1q_2) \); which yields that \(p \) divides \(\alpha_1 \), hence there exists \(\beta \) in \(\mathbb{Q} \) such that \(l = \pm(\beta^2p - \alpha_2^2q_1q_2) \); this in turn implies that \(\left(\frac{l}{p} \right) = \left(\frac{pq_2}{p} \right) = -1 \); but this contradicts the condition \(B(III) \).

• If \(\mathcal{Q}_1\mathcal{H}_1\mathcal{I} \) is principal in \(\mathbb{K} \), then

\[
N_{\mathbb{K}/\mathbb{Q}(\sqrt{pq_1q_2})}(\mathcal{Q}_1\mathcal{H}_1\mathcal{I}) = \mathbb{Q}^2N_{\mathbb{K}/\mathbb{Q}(\sqrt{pq_1q_2})}(\mathcal{Q}_1\mathcal{H}_1\mathcal{I})
\]

is principal in \(\mathbb{Q}(\sqrt{pq_1q_2}) \). So \(N_{\mathbb{K}/\mathbb{Q}(\sqrt{pq_1q_2})}(\mathcal{Q}_1\mathcal{H}_1\mathcal{I}) \) is principal in \(\mathbb{Q}(\sqrt{pq_1q_2}) \); which implies that \(\left(\frac{l}{p} \right) = \left(\frac{pq_2}{p} \right) = -1 \), but this contradicts the condition \(B(III) \).

(b) Suppose \(p, q_1 \) and \(q_2 \) are of type \(B(I) \) or \(B(II) \). As in the assertion (a), we choose a prime \(l \equiv 1 \pmod{4} \) satisfying the conditions \(\left(\frac{pq_1q_2}{l} \right) = 1 \), \(\left(\frac{l}{2} \right) = -1 \) and \(\left(\frac{pq_2}{p} \right) \left(\frac{q_2}{p} \right) = -1 \). Thus \(l \) splits completely in \(\mathbb{K} \). Let \(\mathcal{I} \) be a prime ideal of \(\mathbb{K} \) above \(l \), so \(\mathcal{I} \) is unambiguous ideal and the ideals \(\mathcal{I}, \mathcal{H}_1\mathcal{I}, \mathcal{H}_2\mathcal{I} \) and \(\mathcal{H}_1\mathcal{H}_2\mathcal{I} \) are not principal in \(\mathbb{K} \). Indeed:

• \(\mathcal{I} \) is not principal in \(\mathbb{K} \), the same proof as in (a).
Note that $K_2 = \mathbb{Q}(\sqrt{q_1}, \sqrt{pq_2}, i)$ is an unramified quadratic extension of k (see [4]), hence Lemma 5 implies that $\varphi_{K_2/k}(\mathcal{H}_j I) \neq 1$, where $j \in \{1, 2\}$ and $\varphi_{K_2/k}$ is the d’Artin map of K_2/k. Consequently $\mathcal{H}_j I$ is not principal in k.

If $\mathcal{H}_1 \mathcal{H}_2 I$ is principal in k, then $N_{k/\mathbb{Q}(\sqrt{pq_1q_2})}(\mathcal{H}_1 \mathcal{H}_2 I) = P^2 N_{k/\mathbb{Q}(\sqrt{pq_1q_2})}(I)$ is principal in $\mathbb{Q}(\sqrt{pq_1q_2})$, where P is the ideal of $\mathbb{Q}(\sqrt{pq_1q_2})$ above p; consequently $N_{k/\mathbb{Q}(\sqrt{pq_1q_2})}(I)$ is principal in $\mathbb{Q}(\sqrt{pq_1q_2})$, which is absurd. This completes the proof of the main theorem.

Theorem 6. Let $k = \mathbb{Q}(\sqrt{d}, i)$, where $d = pq_1q_2$ with p, q_1 and q_2 are primes satisfying the conditions A et B. Let $C_{k,2}$ be the 2-class group of k. Put $p = \pi_1 \pi_2$, where π_1 and π_2 are in $\mathbb{Z}[i]$, denote by \mathcal{H}_1 (resp. \mathcal{H}_2 and \mathcal{Q}_1) the prime ideal of k lies above π_1 (resp. π_2 and q_1). Then there exists an unambiguous ideal I of k of order 2 such that

1. If p, q_1 and q_2 are of type B(III), then $C_{k,2} = \langle [\mathcal{H}_1], [\mathcal{Q}_1], [I] \rangle$.

2. Else, $C_{k,2} = \langle [\mathcal{H}_1], [\mathcal{H}_2], [I] \rangle$.

References

106 A. Azizi, A. Zekhnini, M. Taous

[10] A. Azizi, A. Zekhnini and M. Taous, Coclass of $\text{Gal}(k^{(2)}/k)$ for some fields $k = \mathbb{Q}(\sqrt{p_1p_2q}, i)$ with 2-class groups of type $(2, 2, 2)$, J. Algebra Appl, DOI: 10.1142/S0219498816500274.

[13] A. Azizi and M. Taous, Détermination des corps $k = \mathbb{Q}(\sqrt{d}, \sqrt{-1})$ dont les 2-groupes de classes sont de type $(2, 4)$ ou $(2, 2, 2)$, Rend. Istit. Mat. Univ. Trieste. 40 (2009), 93-116.

