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Abstract: In the present paper, we deal the existence results of solutions
for a nonlocal elliptic Dirichlet boundary value problem involving p-Laplacian.
The existence and uniqueness results are obtained by Browder Theorem.
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1. Introduction

Consider the boundary value problem














−M





∫

Ω

|∇u|p dx



△pu = f (x, u) in Ω,

u = 0 on ∂Ω

(1.1)

where Ω ∈ C0,1be a bounded domain in R
N .Let f : Ω×R → R be a caratheodory

function which is decreasing with respect to the second variable, i.e.,

f (x, t1) ≤ f (x, t2) (1.2)

for a.a x ∈ Ω and t1, t2 ∈ R, t1 ≥ t2.
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Assume, moreover, that there exists f0 ∈ Lq (Ω) , q = p
p−1 and c > 0 such

that

|f (x, s)| ≤ f0 (x) + c |s|p−1 (1.3)

and M : R+ → R
+ ,where

M0 ≤ M ≤ M∞ (1.4)

is a continuous and increasing function.

Since the equation (1.1) contains an integral over Ω , it is no longer a
pointwise identity; therefore it is often called nonlocal problem.This problem
models several physical and biological systems, where u describes a process
which depends on the average of itself, such as the population density, see [13].
Moreover, problem (1.1) is related to the stationary version of the Kirchhoff
equation

ρ
∂2u

∂t2
−





P0

h
+

E

2L

L
∫

0

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dx





∂2u

∂x2
= 0 (1.5)

presented by Kirchhoff in 1883, see [11]. This equation is an extension of the
classical d’Alembert’s wave equation by considering the effect of the changing
in the length of the string during the vibrations. The parameters in (1.5) have
the following meanings: L is the length of the string, h is the area of the cross-
section,E is the Young modulus of the material, is the mass density, and P0 is
the initialtension.In recent years, problems involving Kirchhoff type operators
have been studied in many papers, we refer to [10, 11, 14, 15, 16, 21, 23, 24, 25],in
which the authors have used variational method and topological method to
get the existence of solutions for (1.1) in the cases when f could satisfy p-
superlinear, p-sublinear or p-linear growth condition at in nity. In this paper,
motivated by the ideas introduced in [12] and the properties of Kirchhoff type
operators in [17, 18, 19] we study problem (1.1) in the semipositone case; i.e.,
f (0) < 0.In this papers using Browder Theorem we obtain the existence and
uniqueness of solutions for (1.1).

We define the Sobolev space X = W
1,p
0 (Ω) as the clusures of C∞

0 (Ω) with
respect to the norm

‖u‖ =





∫

Ω

|∇u|p dx





1

p

(1.6)

for all u ∈ C∞
0 (Ω).



EXISTENCE AND UNIQUENESS OF WEAK SOLUTION... 13

Definition1.1. We say that u ∈ X is a weak solution to (1.1) if

M





∫

Ω

|∇u|p dx





∫

Ω

|∇u|p−2∇u∇vdx =

∫

Ω

f (x, u) vdx (1.7)

for all u, v ∈ X

Lemma 1.2. The space X = W
1,p
0 (Ω) is continuous imbedded into the

space Lp∗ (Ω) ,where p∗ = Np
N−p

,i.e.

W
1,p
0 (Ω) →֒ Lp∗ (Ω) (1.8)

which means that
‖u‖Lp∗(Ω) ≤ cemb ‖u‖W 1,p

0
(h,Ω) (1.9)

where cemb is the constant of the embedding of W 1,p
0 (Ω) into Lp∗ (Ω). and the

compact embedded into the space Lq (Ω) where q ∈ [1, Np
N−p

),

2. Preliminaries and Space Setting

Definition 2.1. Let A : V → V be an operator on a real Banach space V .
We say that the operator A is:

(i) bounded iff it maps bounded sets into bounded i.e. for each r > 0 there
exists α > 0 (α depending on r ) such that

‖u‖ ≤ r ⇒ ‖A (u)‖ ≤ α,∀u ∈ V

(ii) coercive: iff

lim
‖u‖→∞

〈Au, u〉

‖u‖
= ∞

(iii) monotone iff 〈A (u1)−A (u2) , u1 − u2〉 ≥ 0 for all u1, u2 ∈ V.

(iv) strictly monotone iff 〈A (u1) − A (u2) , u1 − u2〉 > 0 for all u1, u2 ∈
V, u1 6= u2.

(v) strongly monotone iff 〈A (u1) − A (u2) , u1 − u2〉 ≥ k ‖u1 − u2‖ for all
u1, u2 ∈ V, u1 6= u2.

(vi) continuous iff (un) →
w u implies Aun → A (u) for all un, u ∈ V.
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(viii) demicontinuous iff (un) → u implies A (un) →
w A (u) for all un, u ∈ V.

Theorem 2.2. (Browder [4]) Let A be a reflexive real Banach space. More-
over let A : V → V be an operator which is: bounded, demicontinuous, coercive,
and monotone on the space V . Then, the system A (u) = F has at least one
solution u ∈ V for each F ∈ V ′: If moreover, A is strictly monotone operator,
then the system (1.1) has precisely one solution u ∈ V for every F ∈ V ′.

Proof. We consider the Sobolev space X = W
1,p
0 (Ω) with the norm

‖u‖
W

1,p
0

(Ω) =





∫

Ω

|∇u|p dx





1

p

We define operators J, : X → X∗ by

〈J (u) , v〉 = M





∫

Ω

|∇u|p dx





∫

Ω

|∇u|p−2∇u∇vdx

and F : Ω× R → R,by

〈F (u) , v〉 =

∫

Ω

f (x, u) vdx

for all u, v ∈ W
1,p
0 (Ω).

We say that u is a weak solution of (1.1) if

〈A (u) , v〉 = 〈J (u) , v〉 − 〈F (u) , v〉 = 0

holds for any v ∈ W
1,p
0 (Ω).Thus, to find a weak solution of (1.1) is equivalent

to finding u ∈ W
1,p
0 (Ω) which satisfies the operator equation A (u) = 0.

Now, we have the following properties of the operators J and F :

a) J and F are well defined. Using Holder’s inequality, we have

|〈J (u) , v〉| =

∣

∣

∣

∣

∣

∣

M





∫

Ω

|∇u|p dx





∫

Ω

|∇u|p−2∇u∇vdx

∣

∣

∣

∣

∣

∣

≤ M∞





∫

Ω

|∇u|p−1 |∇v| dx




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≤ M∞





∫

Ω

|∇u|p dx





1

q




∫

Ω

|∇v|p dx





1

p

< ∞

|〈F (u) , v〉| =

∣

∣

∣

∣

∣

∣

∫

Ω

f (x, u) vdx

∣

∣

∣

∣

∣

∣

≤

∫

Ω

(

f0 (x) + c |u|p−1
)

|v| dx

≤





∫

Ω

|f0 (x)|
q dx





1

q




∫

Ω

|v|p dx





1

p

+c





∫

Ω

|u|p dx





1

q




∫

Ω

|v|p dx





1

p

< ∞

and hence J and F are well defined.

b) J, and F are bounded operators. Indeed, for every u such that

‖u‖
W

1,p
0

≤ α

we have

‖J (u)‖
X∗

= sup
‖v‖X∗≤1

|〈J (u) , v〉|

≤ sup
‖v‖X∗≤1

M





∫

Ω

|∇u|p dx





∣

∣

∣

∣

∣

∣

∫

Ω

|∇u|p−2∇u∇vdx

∣

∣

∣

∣

∣

∣

≤ M∞ sup
‖v‖X∗≤1





∫

Ω

|∇u|p−1 |∇v| dx





Using Holder’s inequality, we obtain

‖J (u)‖X∗ ≤ M∞ sup
‖v‖X∗≤1





∫

Ω

|∇u|p dx





1

q




∫

Ω

|∇v|p dx





1

p

≤ α
p

qM∞
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Also, we get

‖F (u)‖X∗ = sup
‖v‖X∗≤1

|〈f (x, u) , v〉|

≤ sup
‖v‖X∗≤1

∫

Ω

(

f0 (x) + c |u|p−1
)

|v| dx

≤ sup
‖v‖X∗≤1











∫

Ω

|f0 (x)|
q dx





1

q

+





∫

Ω

|u|(p−1)q dx





1

q







×





∫

Ω

|v|p dx





1

p

≤ cemb

(

‖f0‖Lq(Ω) + cemb ‖u‖
p

q

X

)

≤ cemb

(

‖f0‖Lq(Ω) + cembα
p

q

)

c) J and F are continuous operators. If un → u in X: Then, we have
‖un − u‖X → 0,so that

‖un − u‖Lp(Ω) → 0.

Applying Dominated Convergence Theorem, we obtain
∥

∥

∥

(

|∇un|
p−2∇un − |∇u|p−2∇u

)∥

∥

∥

Lp(Ω)
→ 0

Hence

‖J (un)− J (u)‖
X∗

= sup
‖v‖X∗≤1

|J (un)− J (u) , v〉|

≤ M∞ sup
‖v‖X∗≤1





∫

Ω

(

|∇un|
p−2∇un − |∇u|p−2∇u

)q

dx





1

q

×





∫

Ω

|v|p dx





1

p

≤ M∞cemb





∫

Ω

(

|∇un|
p−2∇un − |∇u|p−2∇u

)q

dx





1

q
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→ 0 for n → ∞

Also, we get

‖F (un)− F (u)‖
X∗

= sup
‖v‖X∗≤1

|F (un)− F (u) , v〉|

≤ cemb





∫

Ω

|f (x, un)− f (x, u)|q dx





1

q

→ 0 for n → ∞

d) Let p ≥ 2,∀x1, x2 ∈ R
N we have the following inequality (see [6])

|x2|
p ≥ |x1|

p + p |x1|
p−2 x1 (x2 − x1) +

|x2 − x1|
p

2p−1 − 1
. (2.1)

Now,

〈J (u)− J (v) , u− v〉 = M





∫

Ω

|∇u|p dx





×

∫

Ω

[

|∇u|p−2∇u− |∇v|p−2∇v
]

(∇u−∇v) dx

= M





∫

Ω

|∇u|p dx





∫

Ω

|∇u|p−2∇u (∇u−∇v) dx

−M





∫

Ω

|∇u|p dx





∫

Ω

|∇v|p−2∇v (∇u−∇v) dx

= I1 + I2.

I1 + I2 ≥ M0

∫

Ω

|∇u−∇v|p = C ‖u− v‖pX

So
〈J (u)− J (v) , u− v〉 ≥ C ‖u− v‖pX (2.2)

Also, we get

〈F (u)− F (v) , u− v〉 =

∫

Ω

[f (x, u)− f (x, v)] (u− v) dx
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Since f is decreasing with respect to the second variable, we have

[f (x, u)− f (x, v)] (u− v) ≤ 0

consequently

〈F (u)− F (v) , u− v〉 =

∫

Ω

[f (x, u)− f (x, v)] (u− v) dx ≤ 0 (2.3)

Equations (2.2) and (2.3) imply that

〈A (u)−A (v) , u− v〉 ≥ C ‖u− v‖pX (2.4)

So A is strongly monotone.
Now, to apply Browder Theorem, it remains to prove that A is a coercive

operator.
From (2.4), we have

〈A (u) , u〉 ≥ 〈A (0) , u〉+ C ‖u‖pX

On the other hand

〈A (0) , u〉 = 〈J (0) , u〉 − 〈F (0) , u〉

= −

∫

Ω

[f (x, 0) u] dx ≥ −

∫

Ω

f0udx

≥ −





∫

Ω

(f0 (x))
q





1

q




∫

Ω

|u|p dx





1

p

≥ −cemb ‖f0‖Lq(Ω) ‖u‖X .

then
〈A (u) , u〉 ≥ C ‖u‖pX − cemb ‖f0‖Lq(Ω) ‖u‖X

So,

lim
‖u‖X→∞

〈A (u) , u〉

‖u‖X
= ∞.

This proves the coercivity condition and so, the existence of weak solution
for (1.1).

The uniqueness of weak solution of (1.1), is a direct consequence of (2.4).
Suppose that u, v be a weak solutions of (1.1) such that u 6= v.

Now, from (2.4), we have

0 = 〈A (u)−A (v) , u− v〉 ≥ C ‖u− v‖2X ≥ 0

therefore u = v. This completes the proof.
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