
International Journal of Pure and Applied Mathematics

Volume 106 No. 4 2016, 977-987

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: 10.12732/ijpam.v106i4.1

PA
ijpam.eu

SOLVING SYSTEM OF HIGHER-ORDER LINEAR

DIFFERENTIAL EQUATIONS ON

THE LEVEL OF OPERATORS

Srinivasarao Thota1, Shiv Datt Kumar2

1Department of Mathematics
Motilal Nehru National Institute of Technology Allahabad

Allahabad, Uttar Pradesh 211004, INDIA

Abstract: In this paper, we present a method for solving the system of higher-order linear

differential equations (HLDEs) with inhomogeneous initial conditions on the level of operators.

Using proposed method, we compute the matrix Green’s operator as well as the vector Green’s

function of a fully-inhomogeneous initial value problems (IVPs). Examples are discussed to

demonstrate the proposed method.
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1. Introduction

Many researchers and engineers have vigorously studied the boundary value
problems and its applications. Normally, the systems of HLDEs arise in many
applications, for example, the models of electrical circuits, multi-body systems,
diffusion processes, robotic modelling and mechanical systems, nuclear reactors,
dissipative operators, vibrating wires in magnetic fields etc.
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Suppose F = C∞[a, b] and [a, b] ⊂ R. Consider a system of n linear ordinary
differential equations of order l ≥ 1 of the form

AlD
lu(x) + · · ·+A1Du(x) +A0u(x) = f(x), (1)

where D = d
dx

is a differential operator, Ai ∈ Fn×n, for i = 0, . . . , l, are coef-
ficient matrices, u(x) = (u1(x), . . . , un(x))

T ∈ Fn is unknown vector to deter-
mine, and f(x) = (f1(x), . . . , fn(x))

T ∈ Fn is an n-dimensional vector forcing
function. If det(Al) 6= 0, then the system (1) is called of the first kind. In
this paper, we consider a system of the first kind with constant coefficients. To
obtain an unique solution, we must have a set of initial conditions. The number
of initial conditions depends on the number of independent solutions of the ho-
mogeneous system (1). In other words, the number of initial conditions and the
dimension of null space of matrix differential operator of a given system must
coincide. Hence, for a system of the first kind, one needs nl initial conditions.
Suppose

B1u(x) = c1, . . . , Blu(x) = cl, (2)

are l initial condition vectors, where Bi ∈ (Fn×n)∗ are initial condition opera-
tors and ci = (ci1, . . . , cin)

T ∈ R
n are initial data, for i = 1, . . . , l. Thus we get

nl conditions.

In order to find the matrix Green’s operator and the vector Green’s func-
tion of the given IVP (1)-(2), we represent the given system in an opera-
tor based notations as Tu = f and B1u = c1, . . . , Blu = cl where T =
AlD

l + · · · + A1D + A0 ∈ Fn×n[D] is a surjective matrix differential operator.
We treat the operator notations of a IVP as an inverse operator problem.
Using the concept of the classical formulation of variation of parameters and
the interpolation technique, we solve the inverse operator problem. We can
view the system (1)-(2) as fully-inhomogeneous IVP, (both system and initial
conditions are inhomogeneous). For dealing with system (1)-(2) as an opera-
tor problem, the parameter f in (1) and c1, . . . , cl in (2) are necessary. Now
the aim is to find the Green’s operator G such that u = G(f ; c1, . . . , cl) and
B1G(f ; c1, . . . , cl) = c1, . . . , BlG(f ; c1, . . . , cl) = cl, for given T and B1, . . . , Bl

with c1, . . . , cl.

Solutions of the differential systems of particular order have been studied by
many researchers, for example, in [1, 2, 3], authors presented the resolution of
a system of second order differential equations by different methods. Suksern
et. al. [4] have given a complete classification of the general case of linear
systems of three ordinary differential equations of second-order. Vakulenko
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et. al. [5] considered a large system of quadratic differential equations and
presented a reduction algorithm to reduce the large system to smaller systems
under some restrictions. Mukesh [6] presented a new technique to solve higher
order ordinary differential equations using modified Adomian decomposition
method. Using the technique given in [6], we get an approximation to the exact
solution of given system. In [7], S. Thota et. al. presented a new method for
solving the system of HLDEs, in which they presented a method for finding the
general solution of a given system without considering the initial conditions.
In this paper, we present a new algorithm for solving IVPs for system (1)-(2)
on the level of operators which produces exact solution. Indeed, this paper
presents a new algorithm for finding the matrix Green’s operator as well as the
vector Green’s function of a fully-inhomogeneous IVP. It is clear from general
observation that, if we can find Null(T ), then we can solve fully inhomogeneous
IVP for HLDEs. There exist many forms to express the general solution of the
fully inhomogeneous IVP as the composition of solution of semi-homogeneous
IVP (homogeneous system with inhomogeneous initial conditions) and solution
of semi-inhomogeneous IVP (inhomogeneous system with homogeneous initial
conditions). To find an explicit formula in operator settings for the solution
corresponding to general linear system (1)-(2), we use the concept of variation
of parameters and interpolation technique as discussed in Section 2.

2. Proposed Method

Recall the operator problem defined by (1)-(2) as follows

Tu = f,

Bu = c.
(3)

where T = AlD
l + · · · + A1D + A0, f = (f1, . . . , fn)

T , B = (B1, . . . , Bl)
T and

c = (c1, . . . , cl)
T .

If v1, . . . , vnl are independent solutions of the homogeneous system (1) ir-
respective of the initial conditions, then the matrix V = [v1 · · · vnl] is called
fundamental matrix. Hence TV = 0. There are many methods in literature
to compute such fundamental matrix of a given matrix differential operator T .
For example, the classical approach in which we convert given system into first
order system [8, 9, 10, 11, 12, 13]. Indeed, if ũ′ = Mũ is first order homogeneous
system of (1), then the fundamental matrix is obtained from the first s rows
of solution eMx, where M is the companion matrix. We call the solution of
homogeneous first order system eMx as exponential matrix and denote by E . A



980 S. Thota, S.D. Kumar

matrix differential operator T (or system of HLDEs) is called regular if it has a
regular exponential matrix, and an IVP (3) is called regular if it has a unique
solution, otherwise singular. The following proposition presents an algorithm
to check the regularity of a given IVP.

Proposition 1. [14] Let E be the exponential matrix of the given IVP (3).
Then there exists unique solution if and only if E is a regular matrix at a, for
fixed initial value a ∈ R.

The matrix E at a is called the evaluation matrix, denoted by Ea.

2.1. Semi-Inhomogeneous Initial Value Problems

Consider a semi-inhomogeneous IVP,

Tu = f,

B1u = · · · = Blu = 0,
(4)

where T,B1, . . . , Bl are as defined before. For given f , we find the solution
u ∈ Fn such that Tu = f,Biu = 0. The following theorem presents the
solution of IVP (4); and the key step of the finding matrix Green’s operator G
for system (4) is the classical technique of variation of parameters [12, 13, 7, 17].
In operator notations, we find an operator G such that TG = 1 and BG = 0.

Theorem 2. Suppose T = AlD
l + · · · + A1D + A0 is a matrix differential

operator with regular exponential matrix Ea at initial point a ∈ R. Then, the
system (4) has the unique solution

u = G(f) =

















nl
∑

k=1

v1,kId
−1

n
∑

p=1
dkpfp

...
nl
∑

k=1

vn,kId
−1

n
∑

p=1
dkpfp

















∈ Fn, (5)

and the matrix Green’s operator is

G =















nl
∑

k=1

v1,kId
−1dk1 . . .

nl
∑

k=1

v1,kId
−1dkn

...
. . .

...
nl
∑

k=1

vn,kId
−1dk1 . . .

nl
∑

k=1

vn,kId
−1dkn















,
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where I is the integral operator (i.e., If =
x
∫

a

f dx), d is the determinant of

exponential matrix Ea ∈ Fnl×nl and V = [v1, . . . , vnl] is the fundamental matrix
of T , dij is the determinant of E i

j obtained from Ea by replacing i-th column by
the (nl + j − n)-th unit vector.

Proof. Using the classical approach, we can transform the given IVP (4)
into first order system ũ′ = Mũ + f̃ and ũ(a) = 0, where M ∈ Fnl×nl is the
companion matrix and f̃ = (0, . . . , 0, f)T . The first order system can be written
as

d

dx

(

e−Mxũ
)

= e−Mxf̃

ũ(a) = 0.

Integrating both sides from a to x with respect to x, we obtain e−Mxũ =
x
∫

a

e−Mξ f̃(ξ) dξ. Since E = eMx, the solution of the first order system is ũ =

E
x
∫

a

E−1f̃(ξ) dξ. In symbolic notation, we have

ũ = EIE−1f̃ ,

where EIE−1 is the Green’s operator of the first order system. Now, the solution
of the given IVP (4) is obtained by collecting the first n rows of ũ as in equa-
tion (5). The uniqueness of the solution follows from the fact that homogeneous
IVP has the trivial solution.

2.2. Semi-Homogeneous Initial Value Problems

Consider a semi-homogeneous IVP,

Tu = 0,

B1u = c1, . . . , Blu = cl.
(6)

For a given initial data c1, . . . , cl at initial point a, we find u ∈ Fn such that
Tu = 0 and Biu = ci. The key step to find matrix Green’s operator G for
system (6) is the interpolation technique [16] satisfying the initial conditions.
In operator notations, we find G such that TG = 0 and BG = C, where
C = (diag(c1), . . . ,diag(cl))

T , as in the following theorem.
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Theorem 3. Suppose T is a matrix differential with a regular exponential
matrix Ea at initial point a ∈ R. Then, the system (6) has the unique solution

u = G(c1, . . . , cl) =

















nl
∑

k=1

v1,kEd
−1

nl
∑

p=1
dkp c̃p

...
nl
∑

k=1

vn,kEd
−1

nl
∑

p=1
dkp c̃p

















∈ Fn,

where E is the evaluation operator (i.e., Ef(x) = f(a)), d is the determinant of
exponential matrix Ea ∈ Fnl×nl and V = [v1, . . . , vnl] is fundamental matrix of
T ; dij is the determinant of E i

j obtained from Ea by replacing i-th column by

the j-th unit vector; and (c̃1, . . . , c̃nl)
T = (c1, . . . , cl)

T = c. The matrix Green’s
operator is

G = V E E−1
a C.

Proof. We have

Tu =





n
∑

r=1

T r
1

nl
∑

k=1

vr,kEd
−1

nl
∑

p=1

dkp c̃p, . . . ,

n
∑

r=1

T r
n

nl
∑

k=1

vr,kEd
−1

nl
∑

p=1

dkp c̃p





T

=





n
∑

r=1

nl
∑

k=1

T r
1 vr,kEd

−1
nl
∑

p=1

dkp c̃p, . . . ,

n
∑

r=1

nl
∑

k=1

T r
nvr,kEd

−1
nl
∑

p=1

dkp c̃p





T

= (0, . . . , 0)T = 0

for TV = 0, where T
j
i is the j-th column and i-th row of T ; and TG =

TV EE−1C = 0. Also

Biu =



ED
i−1

nl
∑

k=1

vr,kEd
−1

nl
∑

p=1

dkp c̃p, . . . , ED
i−1

nl
∑

k=1

vr,kEd
−1

nl
∑

p=1

dkp c̃p





T

=





nl
∑

k=1

ED
i−1vr,kEd

−1
nl
∑

p=1

dkp c̃p, . . . ,

nl
∑

k=1

ED
i−1vr,kEd

−1
nl
∑

p=1

dkp c̃p





T

= (c̃(i−1)l+1, . . . , c̃(i−1)l+l)
T = (ci,1, . . . , ci,l)

T = ci,

and hence BG = C. The uniqueness of solution follows from the fact that the
evaluation matrix Ea is regular.
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2.3. Fully-Inhomogeneous Initial Value Problems

The solution of a fully-inhomogeneous system (3) is obtained by composing
two solutions of the semi-inhomogeneous IVP (given in Theorem 2) and the
semi-homogeneous IVP (given in Theorem 3). The Generalization of this fact
is given in the following theorem.

Theorem 4. Suppose T = AlD
l + · · · + A1D + A0 is a matrix differential

operator with regular exponential matrix Ea at initial point a ∈ R and the
initial data c1, . . . , cl. Then, the IVP

Tu = f,

Bu = c

has the unique solution

u = G(f ; c1, . . . , cl) = G1(f) +G2(c1, . . . , ct) ∈ Fn

and the matrix Green’s operator is

G = G1 +G2,

where G1 and G2 are the matrix Green’s operators as in Theorem 2 and The-
orem 3 respectively.

3. Examples

Example 1. Consider a system of equations

u′′1 = f1,

u′′2 + 2u′2 + 4u1 = f2,

u1(0) = α1, u2(0) = α2, u
′

1(0) = α3, u
′

2(0) = α4.

(7)

In operator notations, we have

T =

(

D
2 0
4 2D+ D

2

)

;u =

(

u1
u2

)

; f =

(

f1
f2

)

;

B =









E 0
0 E

ED 0
0 ED









;C =









α1 0
0 α2

α3 0
0 α4









; c =









α1

α2

α3

α4









.
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The system of equations and initial conditions given in (7) can be rewrite as
Tu = f and Bu = c. Following the algorithm in Section 2, we have the matrix
Green’s operator as

G =

(

g11 g12
g21 g22

)

;

where

g11 = xI− Ix+ E+ xED,

g12 = 0,

g21 = (2x− 1)Ix+

(

x− x2 −
1

2

)

I+
1

2
e−2x

Ie2x

− Ix2 +
(

−e−2x − 2x+ 1
)

E+

(

1

2
e−2x + x− x2 −

1

2

)

ED,

g22 =
1

2
I−

1

2
e−2x

Ie2x + E+

(

−
1

2
e−2x +

1

2

)

ED,

and the vector Green’s function is

u = G(f ;α1, α2, α3, α4) =

(

u1
u2

)

;

where

u1 = x

∫ x

0
f1dx−

∫ x

0
xf1dx+ α1 + xα3,

u2 = (2x− 1)

∫ x

0
xf1dx+

(

x− x2 −
1

2

)
∫ x

0
f1dx

+
1

2
e−2x

∫ x

0
e2xf1dx−

∫ x

0
x2f1dx+

(

−e−2x − 2x+ 1
)

α1

+

(

1

2
e−2x + x− x2 −

1

2

)

α3 +
1

2

∫ x

0
f2dx

−
1

2
e−2x

∫ x

0
e2xf2dx+ α2 +

(

−
1

2
e−2x +

1

2

)

α4.

If we choose f = (cos x, ex)T and c = (1, 0, 2,−1)T for simplicity, then the exact
solution is

u =

(

2− cos x+ 2x
−2x− 4

5 cosx+ 8
5 sinx+ 7

15e
−2x + 1

3e
x − 2x2

)

.
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It is clear that Tu = f,Bu = C and TG = I,BG = 0.

Example 2. [18] Consider an electrical circuit with a resistance of 6 ohms,
an inductance of 0.5 henry, a generator providing alternating voltage given by
24 sin(10t) for t ≥ 0 and a capacitance of 0.02 farad. The alternating voltage
is the external force applied to the circuit, and the resistance is a damping
coefficient. By Kirchhoff’s Law, we have following system of equations, if Q is
the instantaneous charge on the capacitor,

u′1 = u2

u′2 = 48 sin 10t− 12u2 − 100u1,

where u1 = Q and u2 = dQ
dt
. Let u1(0) = α1 and u2(0) = α2 be initial

conditions. In operator notations, we have

A1 =

(

1 0
0 1

)

, A0 =

(

0 −1
100 12

)

and T =

(

D −1
100 12 + D

)

,

B1 =

(

E

0

)

, B2 =

(

0
E

)

and B = [B1, B2] =

(

E 0
0 E

)

;

c =

(

α1

α2

)

and C =

(

α1 0
0 α2

)

, f =

(

0
48 sin 10t

)

The exact solution of the given system is computed similar to Example 1 as

u =

(

u1
u2

)

,

where

u1 = e−6t

(

2

5
cos 8t+

3

10
sin 8t

)

−
2

5
cos 10t

+ e−6tα1

(

3

4
sin 8t+ cos 8t

)

+
1

8
e−6t sin 8tα2

u2 = 4 sin 10t− 5e−6t sin 8t−
25

2
e−6t sin 8tα1

−
3

4
e−6t sin 8tα2 + α2e

−6t cos 8t

Remark: The Example 2 shows the simplicity of the proposed method. In
this example, we find the exact solution of IVP with arbitrary boundary data
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unlike the authors presented in [18, p.173] for particular boundary data. i.e.
authors solved Example 2 with fixed α1 = α2 = 0 and the solution is

u =

(

e−6t
(

2
5 cos 8t+

3
10 sin 8t

)

− 2
5 cos 10t

4 sin 10t− 5e−6t sin 8t

)

.

We can check easily that Tu = f and Bu = c.
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