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Abstract: In this paper, a single server discouraged arrival queue subject to catastrophes,

server failures and non-zero repair time is considered. Explicit expressions for the transient

probabilities of system size are obtained using continued fractions technique. The correspond-

ing steady state probabilities are deduced. Some important system performance measures are

discussed. Further, reliability and availability of the system are analyzed.
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1. Introduction

Queueing systems have been extensively studied by many authors and they
constitute a central tool in modeling and performance analysis of computer
systems, communication networks, machine plants, air traffic, manufacturing
systems and so forth. Stochastic simulations are only capable of producing
estimates and modeling large systems is a very cumbersome process. Simulation
results do not accurately portray the system behavior in a vast majority of the
cases. Therefore, it is important to have an analytical tractable model and
numerical techniques to analyze the queueing systems.
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Despite the enormous literature on queueing theory, a very few stochastic
systems are known to have closed-form transient solutions for the distribution
of the process. Studying the steady-state behavior of the system is simple and
straightforward techniques can be employed. Moreover, stationary results are
mainly used within the system design process and it cannot give insight into
the transient behavior of the system. Transient analytical results can be used
directly to study the finite time properties and they are useful in obtaining opti-
mal solutions which lead to the control of the queueing system. For instance, in
the evaluation of high-speed broad band networks new performance measures
such as interval-based quality of service measures require transient analysis (see
Nagarajan and Kurose [11]). Researchers used different techniques to derive the
transient solution of queueing systems, in particular Bailey [3] used generat-
ing function method, Champernowne [4] used combinatorial method, difference
equation was used by Conolly [5] where as Parthasarathy and Sudhesh [15] used
continued fraction technique to study the transient behavior.

In many practical situations, the service facility possesses defence mecha-
nisms against long waiting lines. For instance, the congestion control mecha-
nism prevents the formation of long queues in computer and communication
systems by controlling the transmission rates of packets based on the queue
length(of packets) at source or destination. Moreover, a long waiting line may
force the servers to increase their rate of service as well as discourage prospective
customers which results in balking. Hence, it is of interest to study queueing
systems taking into consideration the state-dependent nature of the system. In
state-dependent queues the arrival and service rates depend on the number of
customers in the system. Getting analytical results for time-dependent analysis
of the state-dependent queueing systems is usually difficult and often impos-
sible. In spite of its difficulty, Parthasarathy and Sudhesh [16] provided the
transient solution of state-dependent birth death process. Krishna kumar et al
[9] discussed a Markovian queue with chain sequence rates and total catastro-
phes.

The notion of catastrophes was introduced by Gelenbe [6] and subsequent
work has been carried out by many researchers. Practical queueing systems like
computer, communication networks, neural networks and manufacturing sys-
tems are not reliable and disasters may occur in them, thereby violating the op-
eration of the system and in particular leading to loss of several or all customers.
In a computer network, negative customers(catastrophes) can represent viruses,
in a neural network, negative and positive customers can represent inhibitory
and excitatory signals respectively and in manufacturing systems, negative cus-
tomers can represent orders of demand. Catastrophes in a queueing system can
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also be considered as a type of clearing mechanism which removes all the work
load in the system whenever it occurs. One can think of a catastrophe as a
server reset or unplug which causes all the jobs in the system to be last. For
a comprehensive analysis of queueing networks with catastrophes readers may
refer to Tarabia [20] and Noam Paz and Yechiali [18].

Queueing models with server breakdowns are more realistic in computer
and communication switching systems since the failure and repair of processors
have a major impact on the flow of jobs that have to be handled by those
processors (Towsley and Tripathi [21] and Wartenhorst [23]). Such repairable
queueing models are interesting, either from the point of view of queueing theory
or of reliability theory. Krishna kumar and Pavai Madheswari [8] determined
the transient solution for an M/M/1 queue with breakdown and repairable
server subject to catastrophes and discussed the reliability and availability of
the system.

In this paper, a catastrophic queueing model with discouraged arrivals along
with server break down and repair is considered. Transient solutions of the
state-dependent queueing model with the above mentioned features are ob-
tained using continued fractions. The rest of the paper is organized as follows:
The model under discussion is described in Section 2. Section 3 gives a detailed
analysis of the transient state probabilities using continued fractions. Corre-
sponding steady state probabilities, some important performance measures and
the availability and reliability of the system under consideration are discussed
in Section 4. The appendix provides some relations and identities involving con-
fluent hypergeometric functions and continued fractions which are being used
in this paper.

2. Model Description

The system under study can be described in the following way. We consider
a single server queueing system with state-dependent arrival and service rates,
subject to catastrophes at the service station. There is infinite room for cus-
tomers to wait. Customers are served on a first-come, first-served basis. Let
{X(t), t ∈ R+} be the number of customers in the system at time t. We assume
that the arrival and service rates are λn and µn respectively where the number
of customers in the system at time t is n; in any small interval (t, t+△t),△t ≥ 0
an arrival occurs with probability λn△t+o(△t); a service being completed with
probability µn△t+ o(△t). It is obvious that in this interval neither an arrival
nor service takes place with probability 1− (λn + µn)△t+ o(△t).



96 S. Sophia

Apart from arrival and service processes, the catastrophes also occur at the
service facility as a Poisson process with rate α, when the server is idle or busy
serving the customers (i.e.,the server is operational). Whenever a catastrophe
occurs at the busy server, all the customers in the system are wiped out in-
stantly, the server gets inactivated and is sent for repair. The catastrophes
may come either from outside the system or from another service station. The
repair times of failed server are i.i.d, according to an exponential distribution
with mean 1

η
. After the completion of repair, the server immediately returns

to its operational state and is ready for service when a new customer arrives.
In addition, it is assumed that the newly arriving customers during the repair
time of failed server will be lost forever.

Let Pn(t) = P (X(t) = n), n = 0, 1, 2, . . . , denote the transient probabilities
that there are n customers in the system at time t, when the server is in
operational state. Q(t) be the probability that the server is under repair at
time t.

Based on the above assumptions, the state probabilities Pn(t),
n = 0, 1, 2, . . . , and the failure probability Q(t) can be described by the dif-
ferential-difference equations governing the system as follows:

dQ(t)

dt
= −ηQ(t) + α[1 −Q(t)] (2.1)

dP0(t)

dt
= −(α+ λ0)P0(t) + µ1P1(t) + ηQ(t) (2.2)

dPn(t)

dt
= −(λn + µn + α)Pn(t) + λn−1Pn−1(t)

+µn+1Pn+1(t), n = 1, 2, 3, . . . . (2.3)

Without loss of generality, assume that initially there is no customer in the
system, so that P0(0) = 1 & Q(0) = 0.

3. Discouraged Arrivals

Queues with discouraged arrivals have applications in computers with batch job
processing (see Ng chee Hock [13]). Natvig [12] obtained transient solutions for
these state-dependent queues. Sophia and Vijayakumar [19] and Parthasarathy
and Vijayashree [17] considered fluid queues with discouraged arrivals and ob-
tained explicit expressions for the buffer content distribution. Job submissions
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are discouraged when the facility is frequently used and are modeled as a Pois-
son process with sate-dependent arrivals. The time taken to process each job is
exponentially distributed with a constant service rate, regardless of the num-
ber of jobs in the system. For the system under consideration, the arrival and
service rates, when the system size is n, are given by

λn =
λ

n+ 1
, n = 0, 1, 2, . . . & µn = µ, n = 1, 2, 3, . . . . (3.1)

In the following sequel,we denote by g∗(s) as the Laplace transform of g(.). By
taking Laplace transforms and applying appropriate arrival and service rates as
in (3.1) with the initial conditions, the above system of equations are reduced
to a system of simultaneous equations given by

Q∗(s) =
α

s(s+ η + α)
, (3.2)

(s+ λ+ α)P ∗

0 (s) = 1 + µP ∗

1 (s) + ηQ∗(s) (3.3)

and

(s+
λ

n+ 1
+ µ+ α)P ∗

n(s)=
λ

n
P ∗

n−1(s) + µP ∗

n+1(s), n=1, 2, 3, . . . . (3.4)

From (3.2) and (3.3) after some algebra we get

P ∗

0 (s) =
1 + ηα

s(s+η+α)

(s+ λ+ α)− µ
P ∗

1 (s)
P ∗

0 (s)

(3.5)

and (3.4) gives

P ∗

n(s)

P ∗

n−1(s)
=

λ
n

(s+ λ
n+1 + µ+ α)− µ

P ∗

n+1(s)

P ∗

n(s)

, n = 1, 2, 3, . . . . (3.6)

Now using (3.6) iteratively in (3.5), we get P ∗

0 (s) as a continued fraction ex-
pression as (see Wall [22])

P ∗

0 (s) =
1 + ηα

s(s+η+α)

(s+ λ+ α)−

λµ

(s+ λ
2 + µ+ α)−

λ
2µ

(s+ λ
3 + µ+ α)−

. . . . (3.7)

Now, making use of the identity (A.6) of Appendix, the above equation can
be expressed as

P ∗

0 (s) =

(

1 +
ηα

s(s+ η + α)

)

{

s+ λ+ α+ (s+ α+ µ)
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×





(

λ(s+ α)

(s+ µ+ α)2
+ 1

)

1F1(1;
λ(s+α)

(s+µ+α)2
+ 1; −λµ

(s+µ+α)2
)

1F1(2;
λ(s+α)

(s+µ+α)2 + 2; −λµ
(s+µ+α)2 )

−

(

λ+ s+ µ+ α

s+ µ+ α

)]}

−1

so that

P ∗

0 (s) =

(

1 +
ηα

s(s+ η + α)

)[

(s+ µ+ α)

(

λ(s+ α)

(s+ µ+ α)2
+ 1

)

×
1F1(1;

λ(s+α)
(s+µ+α)2

+ 1; −λµ
(s+µ+α)2

)

1F1(2;
λ(s+α)

(s+µ+α)2
+ 2; −λµ

(s+µ+α)2
)
− µ





−1

. (3.8)

Again, using the identity (A.4) and the fact 1F1(0; c; z) = 1 in (3.8), P ∗

0 (s)
simplifies to

P ∗

0 (s) =

(

1 +
ηα

s(s+ η + α)

)

1F1

(

2; λ(s+α)
(s+µ+α)2

+ 2; −λµ
(s+µ+α)2

)

(s + α)
(

λ(s+α)
(s+µ+α)2 + 1

) . (3.9)

Successive iteration of (3.6) yields

P ∗

n(s)

P ∗

n−1(s)
=

λ
n

(s+ λ
n+1 + µ+ α)−

λµ
n+1

(s + λ
n+2 + µ+ α)−

λµ
n+2

(s+ λ
n+3 + µ+ α)−

. . . n = 1, 2, 3, . . . . (3.10)

As before, using the identity (A.6) in the above equation, we have, for
n = 1, 2, 3, . . .,

P ∗

n(s)

P ∗

n−1(s)
=

1
n

λ(n+1)
(s+µ+α)

(

λ(s+α)
(s+µ+α)2

+n+ 1
)

1F1

(

n+ 2; λ(s+α)
(s+µ+α)2

+n+ 2; −λµ
(s+µ+α)2

)

1F1

(

n+ 1; λ(s+α)
(s+µ+α)2

+n+ 1; −λµ
(s+µ+α)2

) . (3.11)

Iterating the above equation, we get

P ∗

n(s) = P ∗

0 (s)
n
∏

j=1

P ∗

j (s)

P ∗

j−1(s)
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=

(

1 + ηα
s(s+η+α)

)(

n+1
s+α

)(

λ
s+µ+α

)n

(

λ(s+α)
(s+µ+α)2 + 1

)(

λ(s+α)
(s+µ+α)2 + 2

)

. . .
(

λ(s+α)
(s+µ+α)2 + n+ 1

)

× 1F1

(

n+2;
λ(s+ α)

(s+ µ+α)2
+n+2;

−λµ

(s+µ+α)2

)

, n = 0, 1, 2, . . . .

(3.12)

After some simplification and using (A.1), the above equation becomes

P ∗

n(s) =
(1 + ηα

s(s+η+α))(n+ 1)λn+1(s + µ+ α)2(n+1)

(s+µ+α)n[(s+α)λ][(s+α)λ+(s+µ+α)2][(s+α)λ+2(s+µ+α)2]...
[(s+α)λ+(n+1)(s+µ+α)2 ]

×
∞
∑

k=0

(n+ 2)k

(

−λµ
(s+µ+α)2

)k

(

λ(s+α)
(s+µ+α)2 + n+ 2

)

k
k!

(3.13)

where (.)k is the Pochhammer symbol as defined in (A.2).
On further simplification (3.13) modifies to

P ∗

n(s) =

(

1 +
ηα

s(s+ η + α)

) ∞
∑

k=0

(−1)kλn+k+1µk

k!n!(s+ µ+ α)n+2k

×
(s+ µ+ α)2(n+k+1)(n+ k + 1)!
n+k+1
∏

l=0

[

(s + α)λ + l(s + µ+ α)2
]

.

By employing the partial fraction expansion, the above equation can be ex-
pressed as

P ∗

n(s) =

(

1 +
ηα

s(s+ η + α)

) ∞
∑

k=0

(−1)kλn+k+1

k!n!
µk

n+k+1
∑

l=0

(

n+ k + 1

l

)

(−1)l

×
1

(s+ µ+ α)n+2k[(s + α)λ+ l(s+ µ+ α)2]
, n = 0, 1, 2, . . . .

(3.14)

On inversion, (3.14) yields, for n = 0, 1, 2, . . . ,

Pn(t) =

∞
∑

k=0

(−1)kλn+k+1

k!n!
µk

n+k+1
∑

l=0

(

n+ k + 1

l

)

(−1)l [gn+2k,l(t)
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+
ηα

η + α

∫ t

0
gn+2k,l(u)[1 − e−(η+α)(t−u) ]du

]

(3.15)

where

gn+2k,l
∗(s) =

1

(s+ α+ µ)2k+n[λ(s + α) + l(s + α+ µ)2]

and

g0,0(t) =
e−αt

λ
(3.16)

g0,1(t) =
e−(λ

2
+µ+α)t

√

λ2

4 + λµ
sinh

(
√

λ2

4
+ λµ

)

t (3.17)

gn+2k,0(t) =
e−αt

λ(2k + n− 1)!

∫ t

0
e−µyyn+2k−1dy, for n+ 2k > 0 (3.18)

and for n+ 2k, l ≥ 1,

gn+2k,l(t) =
e−( λ

2l
+µ+α)t

l(n+ 2k − 1)!
√

λ2

4l2
+ λµ

l

×

∫ t

0
e

λ
2l
yyn+2k−1 sinh

(
√

λ2

4l2
+

λµ

l

)

(t− y) dy. (3.19)

The transient probability of the failure distribution is obtained from
(2.1) as follows

Q(t) =
α

η + α
[1− e−(η + α)t]. (3.20)

Thus, (3.15)-(3.20) completely determine all the state probabilities Pn(t), n =
0, 1, 2, ... and the failure probability Q(t) of the system size for the model
under consideration. One can observe that for α = 0 (3.15) coincides with
Parthasarathy and Selvaraju [14].
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4. Steady State Probabilities

In this section, the structure of the steady state distributions of the system
size and failure distribution of the discouraged arrival queueing system subject
to catastrophes, failures and non-zero repair time is discussed. The moments
related to the steady state system size probabilities are obtained in terms of
confluent hypergeometric functions.

By multiplying (3.2) by s on both sides and taking the limit as s → 0, one
gets

lim
s→0

sQ∗(s) = lim
s→0

s
α

s(s+ η + α)
.

By using Tauberian theorem, the steady state failure distribution Q is obtained
as

Q =
α

(η + α)
. (4.1)

Multiplying equation (3.12) by s on both sides and taking limit as s → 0, one
has

lim
s→0

sP ∗

n(s) = lim
s→0

s

(

1 + ηα
s(s+η+α)

)(

n+1
s+α

)(

λ
s+µ+α

)n

(

λ(s+α)
(s+µ+α)2

+ 1
)(

λ(s+α)
(s+µ+α)2

+ 2
)

. . .
(

λ(s+α)
(s+µ+α)2

+ n+ 1
)

× 1F1

(

n+2;
λ(s + α)

(s+ µ+α)2
+n+2;

−λµ

(s+µ+α)2

)

, n = 0, 1, 2, . . . .

By application of Tauberian theorem, we get Pn in terms of hyper-geometric
function as follows

Pn =
η

η + α

(n+ 1)( λ
α+µ

)n 1F1

(

n+ 2; λα
(α+µ)2

+ n+ 2; −λµ
(α+µ)2

)

(

λα
(α+µ)2

+ 1
)(

λα
(α+µ)2

+ 2
)

. . .
(

λα
(α+µ)2

+ n+ 1
) ,

n = 0, 1, 2, . . . (4.2)

and in particular

P0 = (1−Q)
1F1

(

2; λα
(α+µ)2

+ 2; −λµ
(α+µ)2

)

λα
(α+µ)2

+ 1
. (4.3)
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Pn can also be obtained from (3.14) using Tauberian theorem as

Pn =
ηα

η + α

∞
∑

k=0

(−1)kλn+k+1

k!n!
µk

n+k+1
∑

l=0

(

n+ k + 1

l

)

(−1)l

×
1

(α+ µ)n+2k[αλ+ l(α+ µ)2]
, n = 0, 1, 2, . . . . (4.4)

For α = 0, (4.4) reduces to

Pn = exp

[

−λ

µ

]

(λ
µ
)n

n!
, n = 0, 1, 2, . . . , (4.5)

a well known result of Gross and Harris [7]. Now, based on the above steady
state probabilities the moments are determined using probability generating
function. By multiplying (4.1) and (4.2) by zn and summing over n, steady
state probability generating function

∏

(z) is obtained as

∏

(z) =
α

η + α
+

η

η + α

∞
∑

n=0

(n+ 1)( λz
α+µ

)n
(

λα
(α+µ)2

+ 1
)(

λα
(α+µ)2

+ 2
)

. . .
(

λα
(α+µ)2

+ n+ 1
)

× 1F1

(

n+ 2;
λα

(α+ µ)2
+ n+ 2;

−λµ

(α+ µ)2

)

. (4.6)

Now using the identity (A.7), (4.6) modifies to

∏

(z) =
α

η + α
+

η

(η + α)

1F1

(

2; λα
(α+µ)2

+ 2; −λµ
(α+µ)2

+ λz
(α+µ)

)

( λα
(α+µ)2

+ 1)
. (4.7)

Differentiation of (4.7) (refer (A.8)) with respect to z and setting z = 1 gives
the steady state moments E(X) and E(X2) as follows

E(X) =
η

(η + α)

2λ
(α+µ) 1F1

(

3; λα
(α+µ)2 + 3; λα

(α+µ)2

)

( λα
(α+µ)2

+ 1)( λα
(α+µ)2

+ 2)
(4.8)

E(X2) =
η

(η + α)

6( λ
(α+µ) )

2
1F1

(

4; λα
(α+µ)2 + 4; λα

(α+µ)2

)

( λα
(α+µ)2

+ 1)( λα
(α+µ)2

+ 2)( λα
(α+µ)2

+ 3)
. (4.9)

Similarly, the higher factorial moments can be obtained from (4.7) by successive
differentiation with respect to z and evaluating at z = 1.
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It can be seen that
P(Server is busy)

=
∞
∑

n=1

Pn = (1−Q)
∞
∑

n=1

(n+ 1)(
λ

α+ µ
)n

×
1F1

(

n+ 2; λα
(α+µ)2

+ n+ 2; −λµ
(α+µ)2

)

(

λα
(α+µ)2

+1
)(

λα
(α+µ)2

+2
)

. . .
(

λα
(α+µ)2

+n+ 1
) ,

P(Server is idle or under repair) = Q+ (1−Q)
1F1

(

2; λα

(α+µ)2
+2; −λµ

(α+µ)2

)

λα

(α+µ)2
+1

P(Server is busy \ Server is up)

=
∞
∑

n=1

(n+ 1)(
λ

α+ µ
)n

×
1F1

(

n+ 2; λα
(α+µ)2

+ n+ 2; −λµ
(α+µ)2

)

(

λα
(α+µ)2

+1
)(

λα
(α+µ)2

+2
)

. . .
(

λα
(α+µ)2

+n+ 1
) ,

P(Server is idle \ Server is up) =
1F1

(

2; λα

(α+µ)2
+2; −λµ

(α+µ)2

)

λα

(α+µ)2
+1

.

System Reliability and Availability Analysis

The reliability of a system is defined as the probability that the system will
operate adequately over a given period of time, subject to the given environ-
mental conditions. For example, in computer systems no matter how reliable
the components of the system, there is still a chance that it will fail. In this
section, the reliability indices like the system availability, system reliability and
mean time to failure for the model under consideration are discussed.
In systems with repair, the metric for system performance is the system avail-
ability A(t). A(t) denote the probability that the system is providing service
or the server is idle at time t. Then

A(t) = 1−Q(t) =
η

η + α
+

α

η + α
e−(η+α)t.

The average availability of the system in the interval [0,t] is

A(t) =
1

t

∫ t

0
A(u)du =

η

η + α
+

α

(η + α)2
1− e−(η+α)t

t
.
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Similarly the reliability function R(t), the mean time to system failure MTTF ,
the mean time to repair MTTR and the maintability M(t) of the system can
be obtained directly as in [8].

5. Appendix

The confluent hypergeometric function, also referred to as Kummer function,
is defined by

1F1(a, c, z) = 1 +
a

c
·
z

1!
+

a(a+ 1)

c(c+ 1)

z2

2!
+ . . . =

∞
∑

k=0

(a)kz
k

(c)kk!
(A.1)

for z ∈ C, parameters a, c ∈ C (c not a negative integer), with (α)n, known as
Pochhammer symbol, defined by

(α)n =
Γ(α+ 1)

Γ(α− n+ 1)
, n = 0, 1, 2, . . . . (A.2)

We observe that

1F1(0; c; z) = 1 . (A.3)

The recurrence relation for the confluent hypergeometric function is given by

c(c−1)1F1(a−1, c−1, z)−az1F1(a+1; c+1; z) = c(c−1−z)1F1(a, c, z) (A.4)

(see Abramowitz and Stegun [1]).
The following identities are obtained form Lorentzen and Waadeland [10]

and Andrews [2]:

1F1(a+ 1; c + 1; z)

1F1(a; c; z)
=

c

c− z+

(a+ 1)z

c− z + 1+

(a+ 2)z

c− z + 2+
. . . (A.5)

which can be rewritten as

c
1F1(a; c; z)

1F1(a+ 1; c+ 1; z)
− (c− z) =

(a+ 1)z

c− z + 1+

(a+ 2)z

c− z + 2+
. . . , (A.6)

∞
∑

k=0

(a)ky
k

(c)kk!
1F1(a+ k; c + k;x) = 1F1(a; c;x + y) (A.7)

and
∂n

∂zn
1F1(a, c; z) =

(a)n
(c)n

1F1(a+ n; c+ n; z). (A.8)
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