IJPAM: Volume 110, No. 3 (2016)
Title
K-QUASI CLASS Q AND k-QUASI * CLASSQ COMPOSITION OPERATORS ON
WEIGHTED HARDY SPACE
Authors
A. Devika, G. SureshPSG College of Arts and Science
Coimbatore, 14, INDIA
Abstract
In this paper we discuss the conditions for a composition operator and a weighted composition operator to be k quasi class Q and k quasi * class Q operator and also the characterization of k quasi class Q and k quasi * class Q composition operators on weighted Hardy space.History
Received: August 11, 2016
Revised: September 26, 2016
Published: November 5, 2016
AMS Classification, Key Words
AMS Subject Classification: 47B20, 47B99, 47B15
Key Words and Phrases: Hilbert space, quasi * class Q operators, composition operators, Hardy space
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- Anuradha Gupta and Neha Bhatia, On (n,k)-Quasi Paranormal Weighted Composition Operator, International Journal of Pure and Applied Mathematics, 91, No. 1 (2014), 23-32.
- 2
- J. Campbell and J. Jamison, On some classes of weighted composition operators, Glasgow Math. J. , 32 (1990), 82-94.
- 3
- C. Cowen, Composition Operators on , J. Operator theory, 9 (1983), 77-106.
- 4
- C. C. Cowen and T. L. Kriete, Subnormality and Composition Operators on , Journal of functional Analysis, 81 (1988), 298-319.
- 5
- Carl C. Cowen, Linear Fractional Composition Operators on , J. Integral Equality and Operator theory, 11 (1988), 151-160.
- 6
- B. P. Duggal, C. S. Kubrusly and N. Leven, Contractions of class Q and invariant subspaces, bull. J. Korean Math. Soc. , 42 (2005), 77-106.
- 7
- M. R. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta Sci. Math (Szeged), 35 (1973), 61-64.
- 8
- E. A. Nordgeen, P. Rosenthal and F. S. Wintrobe, Invertible Composition Operator on , journal of functional Analysis, 73 (1987), 324-344.
- 9
- E. A. Nordgeen, Composition Operator in Hilbert space, In: Hilbert Space, Operators, Lecturer Notes in Math., J. Operator Theory, 693 (1977), 37-63.
- 10
- D. Kavitha, k-Quasi Class Q Composition Operators, International Journal of Pure and Applied Mathematics, 106, No. 7 (2016), 121-128.
- 11
- J. V. Ryff, Subordinate function, Duke Math. J., 33 (1966), 347-354.
- 12
- D. Senthilkumar, P. Maheswari Naik and R. Santhi, Weighted Composition of k-Quasi -Paranormal operators, International Journal of Matematical Archive, 3(2) (2012), 739-746.
- 13
- S. Panayappan, D. Senthilkumar and R. Mohanraj, M-Quasi hyponormal Composition Operators on weighted Hardy spaces, Int. Journal of Math. Analysis, 2 (2008), 1163-1170.
- 14
- A. Lambert, Hyponormal Composition Operators, Bull. London Math. Soc. , 18 (1986), 125-134.
- 15
- T. Veluchamy and T. Thulasimani, Posinormal Composition Operators on Weighted Hardy space,International Mathematical forum, 5, No. 24 (2010), 1195-1205.
- 16
- J. Wolff Sur 1 iteration desfunctions, C. R. Acad. Sci. Pairs ser. A, 182 (1926), 42-43.
- 17
- J. T. Yuan and G. X. Ji, On (n,k)-quasi paranormal operators, Studia Math, 209 (2012), 289-301.
- 18
- Q. Zeng and H. Zhong, On (n,k)-quasi * paranormal operators,Studia Math (2012), 1-13.
How to Cite?
DOI: 10.12732/ijpam.v110i3.9 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 110
Issue: 3
Pages: 489 - 501
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).