IJPAM: Volume 110, No. 3 (2016)

Title

K-QUASI CLASS Q AND k-QUASI * CLASS
Q COMPOSITION OPERATORS ON
WEIGHTED HARDY SPACE

Authors

A. Devika$^1$, G. Suresh$^2$
$^{1,2}$PSG College of Arts and Science
Coimbatore, 14, INDIA

Abstract

In this paper we discuss the conditions for a composition operator and a weighted composition operator to be k quasi class Q and k quasi * class Q operator and also the characterization of k quasi class Q and k quasi * class Q composition operators on weighted Hardy space.

History

Received: August 11, 2016
Revised: September 26, 2016
Published: November 5, 2016

AMS Classification, Key Words

AMS Subject Classification: 47B20, 47B99, 47B15
Key Words and Phrases: Hilbert space, quasi * class Q operators, composition operators, Hardy space

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
Anuradha Gupta and Neha Bhatia, On (n,k)-Quasi Paranormal Weighted Composition Operator, International Journal of Pure and Applied Mathematics, 91, No. 1 (2014), 23-32.

2
J. Campbell and J. Jamison, On some classes of weighted composition operators, Glasgow Math. J. , 32 (1990), 82-94.

3
C. Cowen, Composition Operators on $H^2$, J. Operator theory, 9 (1983), 77-106.

4
C. C. Cowen and T. L. Kriete, Subnormality and Composition Operators on $H^2$, Journal of functional Analysis, 81 (1988), 298-319.

5
Carl C. Cowen, Linear Fractional Composition Operators on $H^2$, J. Integral Equality and Operator theory, 11 (1988), 151-160.

6
B. P. Duggal, C. S. Kubrusly and N. Leven, Contractions of class Q and invariant subspaces, bull. J. Korean Math. Soc. , 42 (2005), 77-106.

7
M. R. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta Sci. Math (Szeged), 35 (1973), 61-64.

8
E. A. Nordgeen, P. Rosenthal and F. S. Wintrobe, Invertible Composition Operator on $H^2$, journal of functional Analysis, 73 (1987), 324-344.

9
E. A. Nordgeen, Composition Operator in Hilbert space, In: Hilbert Space, Operators, Lecturer Notes in Math., J. Operator Theory, 693 (1977), 37-63.

10
D. Kavitha, k-Quasi Class Q Composition Operators, International Journal of Pure and Applied Mathematics, 106, No. 7 (2016), 121-128.

11
J. V. Ryff, Subordinate $H^p$ function, Duke Math. J., 33 (1966), 347-354.

12
D. Senthilkumar, P. Maheswari Naik and R. Santhi, Weighted Composition of k-Quasi -Paranormal operators, International Journal of Matematical Archive, 3(2) (2012), 739-746.

13
S. Panayappan, D. Senthilkumar and R. Mohanraj, M-Quasi hyponormal Composition Operators on weighted Hardy spaces, Int. Journal of Math. Analysis, 2 (2008), 1163-1170.

14
A. Lambert, Hyponormal Composition Operators, Bull. London Math. Soc. , 18 (1986), 125-134.

15
T. Veluchamy and T. Thulasimani, Posinormal Composition Operators on Weighted Hardy space,International Mathematical forum, 5, No. 24 (2010), 1195-1205.

16
J. Wolff Sur 1 iteration desfunctions, C. R. Acad. Sci. Pairs ser. A, 182 (1926), 42-43.

17
J. T. Yuan and G. X. Ji, On (n,k)-quasi paranormal operators, Studia Math, 209 (2012), 289-301.

18
Q. Zeng and H. Zhong, On (n,k)-quasi * paranormal operators,Studia Math (2012), 1-13.

How to Cite?

DOI: 10.12732/ijpam.v110i3.9 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 110
Issue: 3
Pages: 489 - 501


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).