IJPAM: Volume 112, No. 3 (2017)

Title

NOTES ON ZYGMUND FUNCTIONS

Authors

H. Akhadkulov$^1$, M.S. Noorani$^2$, A.B. Saaban$^3$, S. Akhatkulov$^4$
$^{1,3}$School of Quantitative Sciences
University Utara Malaysia
CAS 06010, UUM Sintok, Kedah Darul Aman, MALAYSIA
$^{2,4}$School of Mathematical Sciences
University Kebangsaan
43600 UKM Bangi, Selangor DE, MALAYSIA

Abstract

In this paper we study a class of continuous functions satisfying a certain Zygmund condition dependent on a parameter $\gamma>0.$ It shown that the modulus of continuity of such functions is $\mathcal{O}(\delta(\log\frac{1}{\delta})^{1-\gamma})$ if $\gamma \in (0,1)$ and $\mathcal{O}(\delta(\log\log\frac{1}{\delta}))$ if $\gamma=1.$ Moreover, these functions are differentiable if $\gamma>1.$ These results extend the results in literatures [4], [5].

History

Received: August 30, 2016
Revised: November 21, 2016
Published: February 9, 2017

AMS Classification, Key Words

AMS Subject Classification: 26A15, 42A55, 46E35
Key Words and Phrases: Zygmund functions, modulus of continuity, differentiability

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
H. Akhadkulov, M.S. Noorani, S. Akhatkulov, Renormalization of circle diffeomorphisms with a break-type singularity. Preprint, (2016), 26-pages, Avaliable on: https://arxiv.org/pdf/1510.03202v2.pdf

2
F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14, (1961), 415-426.

3
J. Hu, D. Sullivan, Topological conjugacy of circle diffeomorphisms, Ergodic Theory Dynam. Systems, 17, No. 1 (1997), 173-186.

4
M. Weiss, A. Zygmund, A note on smooth functions, Indag. Math., 62 (1959), 52-58.

5
A. Zygmund, Trigonometric Series, Third Edition, Volumes I and II, Cambridge University Press, London, 2002.

How to Cite?

DOI: 10.12732/ijpam.v112i3.3 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 112
Issue: 3
Pages: 481 - 488


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).