International Journal of Pure and Applied Mathematics

Volume 115 No. 1 2017, 27-41

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu doi: 10.12732/ijpam.v115i1.3

STRONGLY T-SEMISIMPLE MODULES AND STRONGLY T-SEMISIMPLE RINGS

Inaam Mohammed Ali Hadi¹, Farhan Dakhil Shyaa^{2 §}

¹Department of Mathematics

University of Baghdad

Baghdad, IRAQ

and

College of Education for Pure Sciences (Ibn-Al-Haitham)
University of Baghdad, Baghdad, IRAQ

²Department of Mathematics University of Al-Qadisiyah
College of Education, Al-Qadisiya, IRAQ

Abstract: In this paper, we introduce the notions of strongly t-semisimple modules and strongly t-semisimple rings as a generalization of semisimple modules, rings respectively. We investigate many characterizations and properties of each of these concepts. An R-module is called strongly t-semisimple if for each submodule N of M there exists a fully invariant direct summand K such that K t-essential in N. Also, the direct sum of strongly t-semisimple modules and homomorvarphic image of strongly t-semisimple is strongly t-semisimple.

A ring R is called right strongly t-semisimple if R_R is strongly t-semisimple. Various characterizations of right strongly t-semisimple rings are given.

AMS Subject Classification: 16D10, 16D70, 16D90, 16P70 Key Words: strongly t-semisimple, t-semismiple modules

1. Introduction

Through this paper R be a ring with unity and M is a right R-module. Let

Received: December 25, 2016

Revised: March 22, 2017 Published: June 24, 2017 © 2017 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

 Z_2 (M) be the second singular (or Goldi torsion) of M which is defined by $Z(M/(Z(M))) = (Z_2(M))/(Z(M))$ where Z(M) is the singular submodule of M A module M is called Z_2 -torsion if $Z_2(M) = M$ and a ring R is called right Z_2 -torsion if $Z_2(R_R) = R_R[8]$. A submodule A of an R-module M is said to be essential in M (denoted by $A \leq_{ess} M$), if $A \cap W(0)$ for every nonzero submodule W of M. Equivalently $A \leq_{ess} M$ if whenever $A \cap W = 0$, then W = 0 [9], Asgari and Haghany [4] introduced the concept of t-essential submodules as generalization of essential submodules. A submodule N of M is said to be t-essential in M (denoted by $(N \leq_{tes} M)$ if for every submodule B of $M, N \cap B \leq Z_2(M)$ implies that $B \leq Z_2(M)$. It is clear that every essential submodule is t-essential, but not conversely. However, the two concepts are equivalent under the class of nonsingular modules. A submodule N of M is called fully invariant if $f(N) \leq N$ for every R-endomorphism f of M.Clearly 0 and M are fully invariant submodules of M [15]. M is called duo module if every submodule of M is fully invariant. A submodule N of an R-module is called stable if for each homomorphism $f:N\to M, f(N)\leq N$. A module is called fully stable if every submodule of M is stable [1]. Asgari and Haghany [3] introduced the notion of t-semisimple modules as a generalization of semisimple modules. A module M is t-semisimple if for every submodule N of M, there exists a direct summand K such that $K \leq_{tes} N$. In this paper we introduce the notion of strongly t-semisimple modules as a generalization of t-semisimple modules. An R-module is called strongly t-semisimple if for each submodule N of M there exists a fully invariant direct summand K such that $K \leq_{tes} N$. It is clear that the class of strongly t-semisimple modules contains the class of t-semisimple. This paper consists of three sections. In Section 2 we introduce the concept of strongly t-semisimple and giving many characterizations and properties of this class of modules.

Section 3, concerns with strongly t-semisimple rings. Several, characterization of commutative strongly t-semisimple ring. Also we give some characterizations of nonsingular strongly t-semisimple ring. First, we list some known result, which will be needed in our work.

Proposition 1.1. (see [2]) The following statements are equivalent for a submodule A of an R-module.

- (1) A is t-essential in M;
- (2) $(A + Z_2(M))/Z_2(M)$ is essential in $M/Z_2(M)$;
- (3) $A + Z_2(M)$ is essential in M;
- (4) M/A is Z_2 -torsion.

Lemma 1.2. (see [4]) Let A_{λ} be submodule of $M\lambda$ for all λ in a set Λ .

- (1) If Λ is a finite and $A_{\lambda} \leq_{tes} M_{\lambda}$, then $\bigcap_{\Lambda} |A_{\lambda} \leq_{tes} \bigcap_{\Lambda} |M_{\lambda}|$ for all $\lambda \in \Lambda$.
- (2) $\bigoplus_{\Lambda} A_{\lambda} \leq_{tes} \bigoplus \Lambda M_{\lambda}$ If and only if $A_{\lambda} \leq_{tes} M_{\lambda}$ for all $\lambda \in \Lambda$.

Lemma 1.3. (see [13]) Let R be a ring and let $L \leq K$ be submodules of an R-module M such that L is a fully invariant submodule of K and K is a fully invariant submodule of M. Then L is a fully invariant submodule of M.

Theorem 1.4. (see [3]) The following statements are equivalent for a module M:

- (1) M is t-semisimple;
- (2) $M/Z_2(M)$) is semisimple;
- (3) $M = Z_2(M \oplus M')$ where M' is a non-singular semisimple module;
- (4) Every nonsingular submodule of M is a direct summand;
- (5) Every submodule of M which contains $Z_2(M)$ is a direct summand.

2. Strongly t-Semisimple Modules

Definition 2.1. An R-module is called strongly t-semisimple if for each submodule N of M there exists a fully invariant direct summand K such that $K \leq_{tes} N$.

Remarks and Examples. (1) It is clear that every strongly t-semisimple module is t-semisimple, but the convers is not true as we shall see later.

(2) If M is \mathbb{Z}_2 -torsion, then M is strongly t-semisimple.

Proof. Since M is Z_2 -torsion, $Z_2(M) = M$. So that for all $A \leq M$, $Z_2(A) = Z_2(M) \cap A = M \cap A = A$, then $(0) + Z_2(A) = A \leq_{ess} A$, Thus $(0) \leq_{tes} A$ for all $A \leq M$.But (0) is a direct summand of M, and (0) is fully invariant. Hence M is strongly t-semisimple.

(3) Every singular module is strongly t-semisimple.

Proof. Let M be a singular R-module. Then Z(M)=M, it follows that $Z_2(M)=Z(M)=M$. Thus M is Z_2 torsion, hence M is strongly t-semisimple. Thus, in particular Z_n as Z-module is strongly t-semisimple for all $n\in Z_+$, n>1.

- (4) The converse of (3) is not true in general, for example Z_4 as Z_4 -module is not singular, but it is Z_2 -torsion, so it is strongly t-semisimple.
- (5) If M is t-semisimple module and weak duo (SS-module). Then M is strongly t-semisimple, where M is a weak duo(or SS-module) if every direct summand of M is fully invariant.

Proof. Let $N \leq M$, since M is t-semisimple, there exists $K \leq M$ such that $K \leq_{tes} N$. But M is SS-module, so K is stable; hence K is fully invariant direct summand. Thus M is strongly t-semisimple, where M is a weak duo(or SS-module) if every direct summand of M is fully invariant.

(6) If M is t-semisimple and duo (or fully stable), then M is strongly t-semisimple.

Hence every t-semisimple multiplication R-module is strongly t-semisimple.

(7) If M is cyclic t-semisimple module over commutative ring R then M is a strongly t-semisimple.

Proof. Since M is cyclic module over commutative ring, then M is a multiplication module. Thus M is duo. Therefor the result follows by part (9).

- (8) $M = Z_n \oplus Z$ as Z-module is not t-semisimple. For all $n \in Z_+$, n > 1. Proof. Suppose M is t-semisimple. Then $M/Z_n \cong Z$ is t-semisimple [4, Corollary 2.4] which is a contradiction.
 - (9) t-semisimple module need not be strongly t-semisimple, for example:

Example 2.2. Let $T=M\oplus M$ where M is a non-singular semisimple R-module, $M\neq (0)$. Hence T is semisimple, and so T is a t-semisimple, let $N=M\oplus (0)$, so there exists $K\leq M$ such that $K\leq_{tes}N$. Hence $K=K_1\oplus (0)$ for some $K_1\leq M$, if $K_1=(0)$, then K=<(0,0)> and $K\leq_{tes}M\oplus (0)$. But $<(0,0)>+Z_2(M+(0))\leq_{ess}M\oplus (0)$ (by Proposition 1.1.(3)) Thus $Z_2(M)\leq_{ess}M$. But $Z_2(M)=(0)$, hence $(0)\leq_{ess}M$ and so M=(0), which is a contradiction. It follows that $K_1\neq (0)$, so $K\neq <(0,0)>$.But in this case K is not fully invariant submodule of T. To see this:

Let $f: T \to T$ defined by T(x,y) = (y,x), for all $(x,y) \in T$, Then $T(K_1 \oplus (0)) = (0) \oplus K_1 \leq \neq K_1 \oplus (0)$. Thus $K = K_1 \oplus (0)$ is not fully invariant submodule of T, such that $K \leq_{tes} N$. Therefore T is not strongly t-semisimple.

In particular, R as R-module is simple non-singular R -module, so $R \oplus R$ as R -module is semisimple and so it is t-semisimple .But $R \oplus R$ is not strongly t-semisimple:

To see this, let $N = R \oplus (0)$. As < (0,0) > is only direct summand fully invariant of $R \oplus R$, such that $< (0,0) > \le N = R(0)$.But $< (0,0) > \le \ne 2010_{tes}$ N because if we assume that $< (0,0) > \le_{tes} N$ then $< (0,0) > +Z_2(N) \le_{ess} N$, so that $< (0,0) > + < (0,0) > = < (0,0) > \le_{ess} N$ which is a contradiction.

Now we shall give some characterizations of strongly t-semisimple.

Theorem 2.3. The following statements are equivalent for an R -module M:

- (1) M is strongly t-semisimple,
- (2) $\frac{M}{Z_2(M)}$ is fully stable semisimple and isomorphic to a stable submodule of M.
- (3) $M = Z_2(M) \oplus M'$ where M' is a nonsingular semisimple fully stable module and M' is a stable submodule in M,
 - (4) Every nonsingular submodule of M is stable direct summand,
- (5) Every submodule of M which contains $Z_2(M)$ is a direct summand of M and $\frac{M}{Z_2(M)}$ is fully stable and isomorphic to a stable submodule of M.
- Proof. (1) \Rightarrow (4) Let N be a nonsingular submodule of M. Since M is strongly t-semisimple, there exists a fully invariant direct summand K of M such that $K \leq_{tes} N$. Assume that $M = K \oplus K'$ for some $K' \leq M$. Hence $N = (K \oplus K') \cap N$ and so $N = K \oplus (K' \cap N)$ by modular law. Thus $K \leq N$ and $\frac{N}{K} \cong (N \cap K')$. But $K \leq_{tes} N$ implies $\frac{N}{K}$ is Z_2 -torsion that is $Z_2(\frac{N}{K}) = \frac{N}{K}$ by Proposition (1.1). On the other hand $(N \cap K') \leq N$ and N is nonsingular, so $(N \cap K')$ is nonsingular submodule, and hence $\frac{N}{K}$ is nonsingular, which implies that $Z_2(\frac{N}{K}) = 0$. Thus $\frac{N}{K} = 0$ and hence N = K. Therefore N is a fully invariant direct summand, and hence N is a stable direct summand.
- $(4) \Rightarrow (3)$ Let M' be a complement of $Z_2(M)$. Hence $M' \oplus Z_2(M) \leq_{ess} M$ And so $M' \leq_{tes} M$ by Proposition (1.1(3)). Thus $\frac{M}{M'}$ is Z_2 -torsion, by proposition (1.1(4)). We claim that M' is nonsingular. To explain our assertion, suppose $x \in Z(M')$, so $x \in M' \leq M$ and $ann(x) \leq_{ess} R$. Hence $ann(x) \leq_{tes} R$ and this implies $x \in Z_2(M)$. Thus $x \in Z_2(M) \cap M' = (0)$, thus x = 0 and M' is a nonsingular. So that by hypothesis, M' is a stable direct summand of M and so that $M = L \oplus M'$ for some $L \leq M$. Thus $L \cong \frac{M}{M'}$ which is \mathbb{Z}_2 -torsion, hence L is Z_2 -torsion .On other hand, $Z_2(M) = Z_2(M') + Z_2(L) = 0 + L = L$. It follows that $M = Z_2(M) \oplus M'$, M' is a nonsingular. Now let $N \leq M'$, so N is a nonsingular and hence $N \leq M$ by hypothesis. It follows that $M = N \oplus W$ for some $W \leq M$ and hence $M' = (N \oplus W) \cap M'$ and so M' $= N \oplus (W \cap M')$ by modular law. Thus $N \leq M'$ and hence M' is semisimple . Next to prove M' is fully stable. It is sufficient to prove that every submodule of M' is fully invariant, so let $N \leq M' \leq M$ and let $f: M' \to M'$. Then $i \circ f \circ \rho \in End(M)$, where i inclusion map from M' to M and ρ is the projection of M onto M'. Then $(i \circ f \circ \rho)(N) \leq N$ since N is stable in M (by hypothesis). Now $(i \circ f \circ \rho)(N) = (i \circ f(\rho(N)))$, but $N \leq M'$, so $\rho(N) = N$. Thus $i \circ f(\rho(N)) = i \circ f(N) = f(N) \leq N$. Thus N is fully invariant submodule of M', but $N \leq M$, so that N is stable in M' and M' is fully stable.
 - $(3) \Rightarrow (1)$ Let $M = Z_2(M) \oplus M'$, M' is nonsingular semisimple fully stable

module, M' is stable in M. Let $N \leq M$, then $(N \cap M') \leq M'$, so $(N \cap M') \leq M'$ (since M' is semisimple). It follows that $M' = (N \cap M') \oplus W$ for some $W \leq M'$ and hence $M = Z_2(M) \oplus (N \cap M') \oplus W$. Hence $(N \cap M') \leq M$. On other hand, $\frac{N}{N \cap M'} \cong \frac{N+M'}{M'} \leq \frac{M}{M'} \cong Z_2(M)$. But $Z_2(M)$ is Z_2 -torsion. Hence, $\frac{N}{N \cap M'}$ is Z_2 -torsion and then by (Proposition 1.1(4) $(N \cap M') \leq_{tes} N$. But $(N \cap M')$ is stable in M' (since M' is fully stable) so $N \cap M'$ is a fully invariant submodule in M. Thus by Lemma (1.3) $N \cap M'$ is fully invariant in M. But $N \cap M'$ is direct summand of M. Thus $N \cap M' \leq M$, $N \cap M' \leq N$, hence M is strongly t-semisimple.

- $(3)\Rightarrow (5)$ Let $N\leq M, N\supseteq Z_2(M)$. Since $M=Z_2(M)\oplus M'$, where M' is a nonsingular semisimple fully stable, M' is stable in M. Then $N=(Z_2(M)\oplus M')\cap N=Z_2(M)\oplus (N\cap M')$ by modular law. But $N\cap M')\le M'$ and M' is semisimple implies $(N\cap M')\le M'$. It follows that $(N\cap M')\oplus W=M'$. Hence $M=Z_2(M)\oplus (N\cap M')\oplus W=N\oplus W$. Thus $N\le M$. Also $\frac{M}{(Z_2(M))}\cong M'$ and M' is a fully stable module and M' is stable in M, so that $\frac{M}{(Z_2(M))}$ is fully stable semisimple and isomorphic to stable submodule of M.
- $(2)\Rightarrow (3)$ Since $Z_2(M)$ is t-closed, $\frac{M}{(Z_2(M))}$ is nonsingular. By condition (2), $\frac{M}{(Z_2(M))}$ is semisimple, hence $\frac{M}{(Z_2(M))}$ is projective (by [10, Coroallary 1.25,P.35]. Now let $\pi:M\to M/(Z_2(2)(M))$ be the natural epiomorphism and as $\frac{M}{(Z_2(M))}$ is projective, we get $\ker \pi=Z_2(M)$ is a direct summand of M. Hence $M=Z_2(M)\oplus M'$. Thus $M'\cong \frac{M}{(Z_2(M))}$ which is nonsingular semisimple fully stable module. Then M' is nonsingular semisimple fully stable submodule of M by condition (2).
- $(3) \Rightarrow (2)$ By condition $(3), M = Z_2(M) \oplus M'$, where M', is a nonsingular semisimple fully stable module and M' is stable in M. It follows that $\frac{M}{(Z_2(M))} \cong M'$. Thus $\frac{M}{(Z_2(M))}$ is semisimple fully stable and isomorphic to stable submodule M' of M.
 - $(2)\Rightarrow (5)$ It follows directly (since $(2)\Leftrightarrow (3)\Rightarrow (5)$ then $(2)\Rightarrow (5)$).
- $(5)\Rightarrow (2)$ Let $\frac{N}{Z_2(M)}\leq \frac{M}{Z_2(M)}$. Then $N\supseteq Z_2(M)$, so by condition (5), N is stable direct summand of M, so that $N\oplus W=M$ for some $W\leq M$. Thus $\frac{N}{(Z_2(M))}+\frac{(W+Z_2(M))}{(Z_2(M))}=\frac{M}{(Z_2(M))}$. But we can show that $\frac{N}{(Z_2(M))}\cap \frac{(N+Z_2(M))}{(Z_2(M))}=0$, as follows:
- Let $\overline{x} \in \frac{N}{(Z_2(M))} \cap \frac{(W+Z_2(M))}{(Z_2(M))}$. Then $\overline{x} = n + Z_2(M) = w + Z_2(M)$ for some $n \in N, w \in W$, and so $n w \in Z_2(M) \subseteq N$. It follow that $n w = n_1$ for

some $n_1 \in N$ and hence $n - n_1 = w \in N \cap W = 0$. Thus $x = 0_{\frac{M}{Z_2(M)}}$ and so $\frac{N}{(Z_2(M))} \oplus \frac{(W + Z_2(M))}{Z_2(M)} = \frac{M}{(Z_2(M))}$. This implies $\frac{M}{Z_2(M)}$ is semisimple. By condition (5), $\frac{M}{(Z_2(M))}$ fully stable and isomorphic to stable submodule of M . But $\frac{M}{Z_2(M)}$ is nonsingular, so $\frac{M}{Z_2(M)}$ is projective and hence $M = Z_2(M) + M'$. Thus M' is nonsingular semisimple (since $M' \cong \frac{M}{Z_2(M)}$). It follows that M' is fully stable module and M' is stable in M.

Now we shall give some other properties of strongly t-semisimple.

Recall that an R-module M is called quasi-Dedekind if $Hom(\frac{M}{N}, M) = 0$ for all nonzero submodule N of M.Equivantally, M is quasi-Dedkind if for each $f \in End(M), f \neq 0$, then kerf = 0 [10]

Proposition 2.4. If M is a quasi-Dedekind module, then M is t-semisimple if and only if M is strongly t-semisimple.

Proof. \Rightarrow since M is quasi-Dedekind, then for each $f \in EndM$ $f \neq 0$, Kerf = 0, and hence kerf is stable and so that by [14], M is SS-module and so that M is strongly t-semisimple by Remarks and Examples 2.2(8).

 \Leftarrow It is clear.

To prove the next result, we state and prove the following Lemma.

Lemma 2.5. Let N be a submodule of M and K is a direct summand of M such that $K \leq N$. If K is fully invariant submodule in M, then K is a fully invariant submodule in N.

Proof. To prove K is a fully invariant submodule of N. Let $\varphi: N \to N$ be an R-homomorphism, to prove $\varphi(K) \leq K$.

Consider the sequence $M \xrightarrow{\rho} K \xrightarrow{inc} N \xrightarrow{\varphi} N \xrightarrow{j} M$. Where ρ is the natural projection and i,j are the inclusion mapping. Then $(j \circ \varphi \circ i \circ \rho) \in EndM$, and since K is a fully invariant in M, so $(j \circ \varphi \circ i \circ \rho)(K) \subseteq K$. But $j \circ \varphi(\rho(K)) = j \circ \varphi(K) = \varphi(K)$, hence $\varphi(K) \leq K$. Thus K is a fully invariant submodule of N.

Proposition 2.6. Every submodule of strongly t-semisimple module is strongly t-semisimple.

Proof. Let $N \leq M$, let $W \leq N$, so $W \leq M$. Since M is strongly t-semisimple, there exists fully invariant direct summand K of M such that $K \leq_{tes} W \leq N$. As $K \leq M$, $M = K \oplus K'$ for some $K' \leq M$ then, $N = N \cap (K \oplus K') = K \oplus (K' \cap N)$. So that $K \leq N$, and by Lemma (2.5) K is fully invariant submodule of N. Therefore, K is fully invariant direct summand of N such that $K \leq_{tes} W \leq N$. Thus N is a strongly t-semisimple module.

Now we consider the direct sum of strongly t-semisimple. First we no-

tice that direct sum of strongly t-semisimple module need not be strongly t-semisimple for example:

Consider R as R -module R is strongly t-semisimple. But $M = R \oplus R$ is not strongly t-semisimple by Remarks and Examples 2.2(12). However, the direct sum of strongly t-semisimple is strongly t-semisimple under certain condition. Before giving our next result, we present the following lemma.

Lemma 2.7. Let $M = M_1 \oplus M_2$ such that $annM_1 + annM_2 = R$. Then $Hom(M_1, M_2) = 0$ and $Hom(M_2, M_1) = 0$.

Proof. since $R = ann M_1 + ann M_2$, then $M_1 = M_1 (ann M_1) + M_1 (ann M_2)$. Put $ann M_1 = A_1$, $ann M_2 = A_2$, therefore $M_1 = M_1 A_1 + M_1 A_2 = M_1 A_2$, then for each $\varphi \in Hom(M_1, M_2), \varphi(M_1) = \varphi(A_2 M_1) = \varphi(M_1) A_2 \leq M_2 A_2 = 0$, hence $\varphi = 0$. Thus $Hom(M_1, M_2) = 0$. Similarly, $Hom(M_2, M_1) = 0$.

Theorem 2.8. Let $M = M_1 \oplus M_2$ such that $ann M_1 + ann M_2 = R$. Then M_1, M_2 are strongly t-semisimple if and only if $M = M_1 \oplus M_2$ is strongly t-semisimple.

Proof. \Leftarrow By Proposition(2.6).

 \Rightarrow Let $N \leq M$. Since $annM_1 + annM_2 = R$, $N = N_1 \oplus N_2$ for some N_1 and N_2 submodules of M_1 and M_2 respectively. As M_1 and M_2 are strongly t-semisimple, then there exist $K_1 \leq M_1$ and $K_2 \leq M_2$ such that K_1 is a direct summand of M_1 , K_1 is fully invariant in M_1 and K_1 is t-essential in N_1 , K_2 is a direct summand of M_2 , K_2 is fully invariant in M_2 and K_2 is t-essential in N_2 .But $K_1 \leq M_1$ and $K_2 \leq M_2$ imply $K_1 \oplus K_2 \leq M_1 \oplus M_2$ and $K_1 \leq tes$ tes t

Now, let

$$\varphi \in \operatorname{End}(M_1, M_2) \cong \begin{pmatrix} \operatorname{End} M_1 & \operatorname{Hom}(M_2, M_1) \\ \operatorname{Hom}(M_1, M_2) & \operatorname{End} M_2 \end{pmatrix}$$
$$= \begin{pmatrix} \operatorname{End} M_1 & 0 \\ 0 & \operatorname{End} M_2 \end{pmatrix}$$

SO

$$\varphi = \left(\begin{array}{cc} \varphi_1 & 0 \\ 0 & \varphi_2 \end{array} \right)$$

for some $\varphi_1 \in \text{End } M_1$, $\varphi_2 \in \text{End } M_2$. Then $\varphi(K_1 \oplus K_2) = \varphi_1(K_1) \oplus \varphi_2(K_2) \leq K_1 \oplus K_2$ since K_1 is fully invariant in M_1 and K_2 is fully invariant in M_2 . Hence M is strongly t-semisimple.

Now we shall give other characterizations of strongly t-semisimple module.

Proposition 2.9. The following statements are equivalent for a module M, such that any direct summand has a unique complement:

- (1) M is strongly t-semisimple,
- (2) For each submodule N of M, there exists a decomposition $M = K \oplus L$ such that $K \leq N$ and L is stable in M and $N \cap L \leq Z_2 L$,
- (3) For each submodule N of M, $N = K \oplus K'$ such that K is a direct summand stable in M and K' is \mathbb{Z}_2 -torsion.

Proof. $(1) \Rightarrow (2)$

Let K be a complement of $Z_2(N)$ in N. Then $K+Z_2(N)\leq_{ess}N$ and let C be a complement of $K\oplus Z_2(M)$. So $K\oplus Z_2(M)\oplus C\leq_{ess}M$ and hence $K\oplus Z_2(M)\oplus C\leq_{tes}M$. But M is strongly t-semisimple implies M t-semisimple, hence $K\oplus Z_2(M)\oplus C=M$ (by [4,Corollary 2.7]. Put $Z_2(M)\oplus C=L$. Then $M=K\oplus L$ and hence $N=(K\oplus L)\bigcap N=K\oplus (N\bigcap L)$ (by modular law). But $K+Z_2(N)\leq_{ess}N$ implies $\frac{N}{K}$ is Z_2 -torsion (by Proposition (1.1)). On other hand, $\frac{N}{K}\cong N\bigcap L$, so that $N\bigcap L$ is Z_2 -torsion. Thus $N\bigcap L=Z_2(L\bigcap N)\leq Z_2(L)$. Now, C is a complement of $K\oplus Z_2(M)$ which is a direct summand of M, and by hypothesis, C is a unique complement and hence by [2, Theorem(1.4.8)] C is stable and hence $L=Z_2(M)\oplus C$ is stable submodule in M. Thus $M=K\oplus L$ is the desired decomposition.

- $(2) \Rightarrow (3)$ By condition (2) $M = K \oplus L$ such that $K \leq N$, L is stable and $N \cap L \leq Z_2(L)$. Hence $N = (K \oplus L) \cap N = K \oplus (L \cap N)$, put $K' = L \cap N$, so $N = K \oplus K'$, $\frac{N}{K} \cong K' = L \cap N$ is Z_2 -torsion, K is stable in M (since K is complement of L which is direct summand of M).
- $(3) \Rightarrow (1)$ By condition (3), $N = K \oplus K'$, $K \leq M$ and K is stable in M and K' is Z_2 -torsion. Then $K \leq M$ and $K \leq N$ and $K \cong K'$ is $K \cong K$.

Definition 2.10. (see [7]) An R-module M is called comultiplication if $ann_M ann_R N = N$ for every submodule N of M.

Lemma 2.11. Every comultiplication module is fully stable.

Proof. Let M be a comultiplication R-module. Then $ann_Mann_RN = N$ for all $N \leq M$. Hence $ann_Mann_R(xR) = xR$ for all cyclic submodules xR in M.Thus M is fully stable, [2, Corollary(3.5)].

Corollary 2.12. Let M be a comultiplication R-module. Then M is t-semisimple if and only if M is strongly t-semisimple.

Proof. \Leftarrow It is clear.

 \Rightarrow It follows directly by Lemma (2.11) and Remarks and Examples 2.2(6).

Recall that an R-module M is called a principally injective if for any $a \in R$, any homomorphism $f: Ra \to M$ extends to an R-homomorphism from R_R to M [12].

Corollary 2.13. Let M be a principally injective. Then M is t-semisimple if and only if M strongly t-semisimple.

Proof. \Leftarrow It is clear.

 \Rightarrow M is principally injective implies that $ann_Mann_R(x) = (x)$ for each $x \in R$. Hence by [2, Corollary(3.5)] M is fully stable. Then by Remark and Examples 2.2(5), M is strongly t-semisimple.

Corollary 2.14. (2.14):

M is injective R- module. Then M is t-semisimple R- module if and only if M is strongly t-semisimple.

Definition 2.15. (2.15) [12]:

An R-module is called scalar if for all $\varphi \in \operatorname{End} M$, there exists $r \in R$ such that $\varphi(x) = xr$ for all $x \in M$, where R is a commutative ring.

Proposition 2.16. (2.16):

Let M be a scalar R-module. Then M is t-semisimple if and only if M is strongly t-semisimple, where R is commutative.

Proof: \Leftarrow It is clear.

 \Rightarrow Let N $\leq M$, $let \varphi \in \operatorname{End} M$. Since M is scalar, there exists $r \in R$ such that $\varphi(x) = xr$, for all $x \in M$. Hence $\varphi(N) = Nr \leq N$ and so that N is fully invariant submodule. Thus M is duo. But M is duo and t-semisimple implies M is strongly t-semisimple by Remarks and Examples 2.2(6).

Proposition 2.17. (2.17):

Let M be a duo R-module. Then the following statements are equivalent

- (1) Every R-module is t-semisimple and $Z_2(M)$ is projective.
- (2) Every R-module is strongly t-semisimple and $Z_2(M)$ is projective.
- (3) R is semisimple.

Proof:
$$(1) \Rightarrow (3)$$

Let M be an R-module. Then M is t-semisimple by hypothesis. Hence $M = Z_2(M) \oplus M'$, where M' is a nonsingular semisimple. It follows that M' is projective, but by hypothesis $Z_2(M)$ is projective. Thus M is projective, that is every R-module is projective and so by [11, Corollary 8.2.2(e)]R is semisimple. $(3) \Rightarrow (1)$

Since R is semisimple, every R-module is semisimple by [11, Corollary 8.2.2(a)]

Hence every R-module is t-semisimple. Also R is semisimple, then every R-module is projective [11, Corollary 8.2.2(e)]. Thus $Z_2(M)$ is projective.

- $(1) \Rightarrow (2)$ It follows by Remark and Examples (2.2.(6))
- $(2) \Rightarrow (1)$ It is clear.

Proposition 2.18. (2.18):

Let M be a duo R-module if R is semisimple then every R-module is strongly t-semisimple, and conversely hold if R is nonsingular.

Proof: \Rightarrow R is semisimple implies every R-module M is semisimple and hence t-semisimple. But M is duo by hypothesis, so that M is strongly t-semisimple by Remark and Examples 2.2(6).

 \Leftarrow By hypothesis, R is t-semisimple. But R is nonsingular, so R is semisimple Now we introduce the following:

Definition 2.19. (2.19):

An R-module M is called t-uniform if every submodule of M is t-essential.

Proposition 2.20. (2.20):

If M is t-uniform then M is strongly t-semisimple.

Proof: Since M is t-uniform, $(0) \leq_{tes} M$. Hence $\frac{M}{(0)}$ is Z_2 -torsion (by proposition. 1.1(4)); that is M is Z_2 -torsion (so $M = Z_2(M)$). Now for all $N \leq M$, $Z_2(N) = Z_2(M) \cap N = N$. Hence $(0) \leq_{tes} N$ (since $(0) + Z_2(N) = 0 + N = N \leq_{ess} N$). But (0) is fully invariant direct summand of M. Thus M is strongly t-semisimple.

Remark 2.21. (2.21):

A uniform module need not be t-uniform.

Example 2.22. (2.22):

Consider Z- module Z_6 , Z_6 is singular, hence Z_6 is Z_2 -torsion; that is $Z_2(Z_6) = Z_6$. Hence for each $N \leq Z_6$, $N + Z_2(Z_6) = Z_6 \leq_{ess} Z_6$ and then by Proposition $(1.1), N \leq_{tes} Z_6$. Thus Z_6 is t-uniform. But Z_6 is not uniform.

Remark 2.23. (2.23):

It is clear that t-uniform module need not uniform, as the following example shows.

Example 2.24. (2.24):

 $\begin{array}{l} \mathbf{Z}_6 as Z - module, \mathbf{Z}_2(M) = Z_6 = M, \overline{(0)} \leq_{tes} M \text{ since } \overline{(0)} + Z_2(M) = M \leq_{ess} M, \\ \text{Let } N_1 = <\overline{2} > \leq_{tes} M \text{ since } <\overline{2} > + Z_2(M) = M \leq_{ess} M, \text{ similarly } N_2 = <\overline{3} > \leq_{tes} M, N_3 = M \leq_{tes} M. \text{Thus M is t-uniform, but M is not uniform.} \end{array}$

Remark 2.25. (2.25):

M is t-uniform then $\frac{\dot{M}}{N}$ is t-semisimple for all $N \leq M$.

Proof: For each $N \leq M$, $N \leq_{tes} M$. Then $\frac{M}{N}$ is Z_2 -torsion (by proposition 1.1(4)). Hence $\frac{M}{N}$ is strongly t-semisimple by Remarks and Examples 2.2(2).

3. Strongly t-Semisimple Rings

Proposition 3.1. (3.1):

Every commutative t-semisimple ring R is strongly t-semisimple ring R.

Proof: Since R is commutative ring, then R is duo R-module and t-semisimple, implies R is strongly t-semisimple by Examples and Remarks 2.2(6).

Proposition 3.2. (3.2):

Let R be a commutative Artinian ring with $RadR \leq_{tes} R$. Then R is strongly t-semisimple. In particular every local Artinian ring is strongly t-semisimple.

Proof: By [4, Proposition 3.1], R is t-semisimple ring. Hence by Proposition (3.1), R is strongly t-semisimple.

Example 3.3. (3.3):

The ring $Z_{P^{\infty}}$ is Artnian and $RadZ_{P^{\infty}}=Z_{P^{\infty}}\leq_{ess}Z_{P^{\infty}}$. Hence by Proposition (3.2), $Z_{P^{\infty}}$ is strongly t-semisimple.

Proposition 3.4. (3.4):

The following statements are equivalent for a commutative ring

- (1) R is strongly t-semisimple;
- (2) R is t-semisimple;
- (3) Every R-module is t-semisimple;
- (4) Every nonsingular R-module is semisimple;
- (5) Every nonsingular R-module is injective;
- (6)Every R-module M there is an injective submodule M' such that $M = Z_2$ $(M) \oplus M'$;
- (7) $\frac{R}{Z_2(R)}$ is a semisimple ring.
- (8) Every maximal ideal which contains Z_2 (R) is a direct summand;
- (9) R is a direct product of two ring, one is \mathbb{Z}_2 torsion and other is semisimple ring.

Proof: $(1) \Rightarrow (2)$ It is clear

 $(2) \Rightarrow (1)$ It is follows by (Proposition 3.1).

- $(2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) \Leftrightarrow (7) [3, Theorem (3.2)].$
- $(2) \Leftrightarrow (8) \Leftrightarrow (9)$ It follows by [3, Theorem 3.8]

Corollary 3.5. (3.5) [4]:

Let R be a t-semisimple ring.

- (1) A maximal right ideal I of R is a direct summand if and only if it contains $Z_2(R)$.
- (2) A minimal right ideal J of R is a direct summand if and only if it is non-singular.

Corollary 3.6. (3.6):

Let R be a strongly t-semisimple. A maximal ideal I of R is a direct summand if and only if $I \supseteq Z_2(R)$. A minimum ideal I of R is a direct summand if and only if I is nonsingular.

Proof: It follows directly by (Corollary (3.5)).

Recall that a ring R is called quasi-Frobenius if R is self-injective and Noetherian. Equivalently "R is called quasi-Frobenius if R is self-injective and Artinian [9].

Corollary 3.7. (3.7):

Let R be a right nonsingular. Then R is quasi-Frobenius if and only if R is semisimple [3].

Proposition 3.8. (3.8):

Let R be a nonsingular ring. Then the following statements are equivalent:

- (1) R is quasi-Frobenius;
- (2) R is semisimple;
- (3) R is t-semisimple (R is strongly t-semisimple);
- (4) Every R-module is t-semisimple;
- (5) Every nonsingular R-module is semisimple;
- (6) Every nonsingular R-module is injective;
- (7) For every R-module M, there exists an injective submodule M' such that $M = Z_2(M) \oplus M'$;
- (8) $\frac{R}{Z_2(R)}$ is a semisimple ring.

Proof: $(3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) \Leftrightarrow (7) \Leftrightarrow (8)$ by Proposition (3.4).

- $(1) \Leftrightarrow (2)$ It follows by Corollary (3.7)
- $(2) \Leftrightarrow (3)$ It follows by [3] and Proposition(3.4).

Proposition 3.9. (3.9):

The following statements are equivalent for a commutative ring R

- (1)R is t-semisimple (R is strongly t-semisimple);
- (2) Every weak duo module (SS-module) is strongly t-semisimple;
- (3) Every R-module is t-semisimple.
 - Proof: $(1) \Leftrightarrow (3)$ by Proposition (3.4)
- $(3) \Leftrightarrow (2)$ It follows by Remarks Examples 2.5(8).
- $(2) \Rightarrow (1)$ R is duo (because R is commutative ring with unity), so R is strongly t-semisimple.

Proposition 3.10. (3.10):

The following statements are equivalent for a commutative ring R:

- (1) R is t-semisimple;
- (2) Every nonsingual R-module is strongly t-semisimple;
- (3) For every R-module M, there exists a strongly t-semisimple R-module M' such that $M = Z_2(M) \oplus M'$.
- Proof: (1) \Rightarrow (2) Let M be a nonsingular R-module. Hence M is t-semisimple by Proposition (3.4) (1 \Rightarrow 3), also M is injective by (Proposition (3.4) (1) \Rightarrow (5)). It follows that M is strongly t-semisimple by (Corollary (2.15))
- $(2) \Rightarrow (1)$ By condition (2) every nonsingular module M is strongly t-semisimple, hence every nonsingular module M is t-semisimple. Thus every nonsingular is semisimple by (Remark and Examples 2.2(6)). It follows that R is t-semisimple by (Proposition (3.4) (4) \Rightarrow (1)).
- (1) \Rightarrow (3) By (Proposition (3.4) (1) \Rightarrow (6)), $M = Z_2(M) \oplus M'$ for some injective R-module M' by But $M' \cong \frac{M}{Z_2(M)}$ which is nonsingular module. Hence M' is t-semisimple by (proposition (3.4) (1) \Rightarrow (4)). Thus M' is t-semisimple and injective, so M' is strongly t-semisimple by Corollary (2.15).
- (3) \Rightarrow (1) $M = Z_2(M) \oplus M'$, where M' is strongly t-semisimple. Hence M' is t-semisimple. But $M' \cong \frac{M}{Z_2(M)}$ which is nonsingular, so M' is nonsingular t-semisimple. Thus M' is semisimple by Remarks and Examples 2.2(6). But M' is injective. Thus R is t-semisimple by (Proposition (3.4) (6) \Rightarrow (1)).

References

- [1] Abas, M.S.(1991). On Fully Stable Modules, Ph.D. Thesis, College of Science, University of Baghdad.
- [2] Asgari, Sh., Haghany, A. (2011).t-Extending modules and t-Baer modules, Comm.Algebra, 39:1605-1623.
- [3] Asgari, Sh., Haghany, A., Tolooei Y. (2013). T-semisimple modules and T-semisimple rings comm. Algebra, 41:5,1882-1902.

- [4] Asgri, Sh., Haghany, A.(2010). Densely co-Hopfian modules. Journal of Algebra and Its Aplications 9:989-1000.
- [5] Chatters, A. W., Khuri, S. M. (1980). Endomorphism rings of modules over nonsingular CS rings, J. London Math. Soc. 21:434-444.
- [6] Chen, J., Ding, N., Yousif, M. F. (2004). On Noetherian rings with essential socle, J.
- [7] Clark, J., Lomp, C., Vanaja N., Wisbauer, R. (2006). Lifting Modules. Frontiers in Mathematics, Birkhauser Verlag, Basel.
- [8] Dung, N. V., Huynh, D. V., Smith, P. F, Wisbauer, R. (1994). Extending Modules. Pitman Research Notes in Mathematics 313, Longman, Harlow.
- [9] Goodearl K.R., Ring Theory, Non Singular Rings and Modules, (1976) Marcel Dekker, Inc. New York and Basel.
- [10] Kasch F. Modules and Rings (1982), Acad. Press, London.
- [11] Mijbass A.S., ,1997." Quasi Dedekind Modules", Ph.D. Thesis ,College of Science University of Baghdad.
- [12] Lam, T. Y. (1998). Lectures on Modules and Rings. Graduate Texts in Mathematics, Vol. 189, Springer-Verlag, New York/Berlin.
- [13] Patrick F. Smith, (2015) . Fully Invariant Multiplication Modules. Palestine Journal of Mathematics, 4: 462470.
- [14] Tamadher A. I.(2015). Modules related to Rickart Modules. Ph.D. Thesis, College of Science, Al- Mustansiriyah University.
- [15] Wisbauer R. (1991). Foundations of Modules and Rings theory, reading: Gordon and Breach.