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Abstract: In this paper, we introduce the notions of strongly t-semisimple modules and
strongly t-semisimple rings as a generalization of semisimple modules, rings respectively. We
investigate many characterizations and properties of each of these concepts. An R-module
is called strongly t-semisimple if for each submodule N of M there exists a fully invariant
direct summand K such that K t-essential in N. Also, the direct sum of strongly t-semisimple
modules and homomorvarphic image of strongly t-semisimple is strongly t-semisimple.

A ring R is called right strongly t-semisimple if RR is strongly t-semisimple. Various

characterizations of right strongly t-semisimple rings are given.
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1. Introduction

Through this paper R be a ring with unity and M is a right R-module. Let
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Z2 (M) be the second singular (or Goldi torsion) of M which is defined by
Z(M/(Z(M))) = (Z2(M))/(Z(M)) where Z(M) is the singular submodule of
M A module M is called Z2-torsion if Z2(M) = M and a ring R is called
right Z2-torsion if Z2(RR) = RR[8].,A submodule A of an R-module M is
said to be essential in M (denoted by A ≤ess M), if A

⋂

W (0) for every non-
zero submodule W of M . Equivalently A ≤ess M if whenever A

⋂

W = 0,
then W = 0 [9],Asgari and Haghany [4] introduced the concept of t-essential
submodules as generalization of essential submodules. A submodule N of M is
said to be t-essential in M (denoted by (N ≤tes M) if for every submodule B
of M , N

⋂

B ≤ Z2(M) implies that B ≤ Z2(M). It is clear that every essential
submodule is t-essential, but not conversely. However, the two concepts are
equivalent under the class of nonsingular modules. A submodule N of M is
called fully invariant if f(N) ≤ N for every R-endomorphism f of M .Clearly
0 and M are fully invariant submodules of M [15] . M is called duo module
if every submodule of M is fully invariant. A submodule N of an R-module
is called stable if for each homomorphism f:N → M ,f(N) ≤ N . A module is
called fully stable if every submodule of M is stable[1]. Asgari and Haghany [3]
introduced the notion of t-semisimple modules as a generalization of semisimple
modules. A module M is t-semisimple if for every submodule N of M , there
exists a direct summand K such that K ≤tes N . In this paper we introduce
the notion of strongly t-semisimple modules as a generalization of t-semisimple
modules. An R-module is called strongly t-semisimple if for each submodule
N of M there exists a fully invariant direct summand K such that K ≤tes N .
It is clear that the class of strongly t-semisimple modules contains the class of
t-semisimple. This paper consists of three sections. In Section 2 we introduce
the concept of strongly t-semisimple and giving many characterizations and
properties of this class of modules.

Section 3, concerns with strongly t-semisimple rings. Several, characteriza-
tion of commutative strongly t-semisimple ring. Also we give some character-
izations of nonsingular strongly t-semisimple ring. First, we list some known
result, which will be needed in our work.

Proposition 1.1. (see [2]) The following statements are equivalent for a
submodule A of an R-module.

(1) A is t-essential in M ;

(2) (A+ Z2(M))/Z2(M) is essential in M/Z2(M);

(3) A+ Z2(M) is essential in M ;

(4) M/A is Z2-torsion.

Lemma 1.2. (see [4]) Let Aλ be submodule of Mλ for all λ in a set Λ.
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(1) If Λ is a finite and Aλ ≤tes Mλ, then
⋂

Λ | Aλ≤tes

⋂

Λ |Mλ for all λ ∈ Λ.

(2) ⊕Λ Aλ ≤tes ⊕ ΛMλ If and only if Aλ ≤tes Mλ for all λ ∈ Λ.

Lemma 1.3. (see [13]) Let R be a ring and let L ≤ K be submodules of
an R-module M such that L is a fully invariant submodule of K and K is a
fully invariant submodule of M . Then L is a fully invariant submodule of M .

Theorem 1.4. (see [3]) The following statements are equivalent for a
module M :

(1) M is t-semisimple;

(2) M/Z2(M)) is semisimple;

(3) M = Z2(M ⊕M
′

) where M
′

is a non-singular semisimple module;

(4) Every nonsingular submodule of M is a direct summand;

(5) Every submodule of M which contains Z2(M) is a direct summand.

2. Strongly t-Semisimple Modules

Definition 2.1. An R-module is called strongly t-semisimple if for each
submodule N of M there exists a fully invariant direct summand K such that
K ≤tes N .

Remarks and Examples. (1) It is clear that every strongly t-semisimple
module is t-semisimple, but the convers is not true as we shall see later.

(2) If M is Z2-torsion, then M is strongly t-semisimple.

Proof. Since M is Z2-torsion, Z2(M) = M . So that for all A ≤ M , Z2(A)
= Z2(M)

⋂

A= M
⋂

A = A, then (0) +Z2(A)=A ≤ess A, Thus (0) ≤tes A for
all A ≤ M .But (0) is a direct summand of M , and (0) is fully invariant. Hence
M is strongly t-semisimple.

(3) Every singular module is strongly t-semisimple.

Proof. Let M be a singular R-module. Then Z(M) = M , it follows that
Z2(M) = Z(M) = M . Thus M is Z2 torsion, hence M is strongly t-semisimple.
Thus, in particular Zn as Z-module is strongly t-semisimple for all n ∈ Z+,
n > 1 .

(4) The converse of (3) is not true in general, for example Z4 as Z4 -module
is not singular, but it is Z2-torsion, so it is strongly t-semisimple.

(5) If M is t-semisimple module and weak duo (SS-module). Then M is
strongly t-semisimple, where M is a weak duo(or SS-module) if every direct
summand of M is fully invariant.
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Proof. Let N ≤ M , since M is t-semisimple, there exists K ≤⊕ M such
that K ≤tes N . But M is SS-module, so K is stable; hence K is fully invariant
direct summand. Thus M is strongly t-semisimple,where M is a weak duo(or
SS-module) if every direct summand of M is fully invariant.

(6) If M is t-semisimple and duo (or fully stable), then M is strongly t-
semisimple.

Hence every t-semisimple multiplication R-module is strongly t-semisimple.

(7) If M is cyclic t-semisimple module over commutative ring R then M is
a strongly t-semisimple.

Proof. Since M is cyclic module over commutative ring, then M is a mul-
tiplication module. Thus M is duo. Therefor the result follows by part (9).

(8) M = Zn ⊕ Z as Z-module is not t-semisimple. For all n ∈ Z+, n > 1.
Proof. Suppose M is t-semisimple. Then M/Zn

∼= Z is t-semisimple [4,
Corollary 2.4] which is a contradiction.

(9) t-semisimple module need not be strongly t-semisimple, for example:

Example 2.2. Let T = M ⊕ M where M is a non-singular semisimple
R-module, M 6= (0). Hence T is semisimple, and so T is a t-semisimple, let
N = M⊕(0), so there exists K ≤⊕ M such that K ≤tes N . HenceK = K1⊕(0)
for some K1 ≤ M , if K1 = (0), then K = < (0, 0) > and K ≤⊕

tes M ⊕ (0).
But < (0, 0) >+ Z2 (M + (0)) ≤ess M ⊕ (0) (by Proposition 1.1.(3)) Thus
Z2(M) ≤ess M . But Z2(M) = (0), hence (0) ≤ess M and so M = (0), which is
a contradiction. It follows that K1 6= (0), so K 6=< (0, 0) >.But in this case K
is not fully invariant submodule of T. To see this:

Let f : T → T defined by T (x, y) = (y, x), for all (x, y) ∈ T , Then T (K1 ⊕
(0)) = (0) ⊕ K1 ≤6= K1 ⊕ (0). Thus K = K1 ⊕ (0) is not fully invariant
submodule of T, such that K ≤tesN.Therefore T is not strongly t-semisimple.

In particular, R as R-module is simple non-singular R -module, so R ⊕ R
as R -module is semisimple and so it is t-semisimple .But R⊕R is not strongly
t-semisimple:

To see this, let N = R ⊕ (0). As < (0, 0) > is only direct summand fully
invariant of R⊕R, such that < (0, 0) >≤ N = R(0).But < (0, 0) >≤6= 2010tes
N because if we assume that < (0, 0) >≤tes N then < (0, 0) > +Z2(N) ≤ess N ,
so that < (0, 0) > + < (0, 0) >=< (0, 0) >≤ess N which is a contradiction.

Now we shall give some characterizations of strongly t-semisimple.

Theorem 2.3. The following statements are equivalent for an R -module
M:
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(1) M is strongly t-semisimple,

(2) M
Z2(M) is fully stable semisimple and isomorphic to a stable submodule

of M,

(3) M = Z2(M) ⊕ M
′

where M
′

is a nonsingular semisimple fully stable
module and M

′

is a stable submodule in M,

(4) Every nonsingular submodule of M is stable direct summand,

(5) Every submodule of M which contains Z2(M) is a direct summand of
M and M

Z2(M) is fully stable and isomorphic to a stable submodule of M.

Proof. (1) ⇒ (4) Let N be a nonsingular submodule of M. Since M is
strongly t-semisimple, there exists a fully invariant direct summand K of M
such that K ≤tes N . Assume that M = K ⊕ K

′

for some K
′

≤ M .Hence
N = (K⊕K

′

)
⋂

N and so N = K⊕ (K
′ ⋂

N) by modular law. Thus K ≤⊕ N
and N

K
∼= (N

⋂

K
′

). But K ≤tes N implies N
K

is Z2-torsion that is Z2(
N
K
) = N

K

by Proposition (1.1). On the other hand (N
⋂

K
′

) ≤ N and N is nonsingular, so
(N

⋂

K
′

) is nonsingular submodule, and hence N
K

is nonsingular, which implies
that Z2 (

N
K
) = 0.Thus N

K
= 0 and hence N = K. Therefore N is a fully invariant

direct summand, and hence N is a stable direct summand.

(4) ⇒ (3) Let M
′

be a complement of Z2(M).Hence M
′

⊕Z2(M) ≤ess M
And so M

′

≤tes M by Proposition (1.1(3)).Thus M

M
′ is Z2-torsion, by proposi-

tion (1.1(4)).We claim that M
′

is nonsingular. To explain our assertion, suppose
x ∈ Z(M

′

), so x ∈ M
′

≤ M and ann(x) ≤ess R. Hence ann(x) ≤tes R and
this implies x ∈ Z2(M). Thus x ∈ Z2(M)

⋂

M
′

= (0), thus x=0 and M
′

is
a nonsingular. So that by hypothesis, M

′

is a stable direct summand of M
and so that M = L ⊕M

′

for some L ≤ M .Thus L ∼= M

M
′ which is Z2-torsion,

hence L is Z2-torsion .On other hand, Z2(M) = Z2(M
′

) +Z2(L) = 0+L = L.
It follows that M = Z2(M) ⊕ M

′

, M
′

is a nonsingular. Now let N ≤ M
′

,
so N is a nonsingular and hence N ≤⊕ M by hypothesis. It follows that
M = N ⊕ W for some W ≤ M and hence M

′

= (N ⊕ W )
⋂

M
′

and so M
′

= N⊕(W
⋂

M
′

) by modular law. Thus N ≤⊕ M
′

and hence M
′

is semisimple
.Next to prove M

′

is fully stable. It is sufficient to prove that every submodule
of M

′

is fully invariant, so let N ≤ M
′

≤ M and let f : M
′

→ M
′

. Then
i◦f ◦ρ ∈ End(M), where i inclusion map from M

′

to M and ρ is the projection
of M onto M

′

. Then (i ◦ f ◦ ρ)(N) ≤ N since N is stable in M (by hypoth-
esis). Now (i ◦ f ◦ ρ)(N) = (i ◦ f(ρ(N)), but N ≤ M

′

,so ρ(N) = N . Thus
i ◦ f(ρ(N)) = i ◦ f(N) = f(N) ≤ N . Thus N is fully invariant submodule of
M

′

, but N ≤⊕ M , so that N is stable in M
′

and M
′

is fully stable.

(3) ⇒ (1) Let M = Z2(M) ⊕M
′

, M
′

is nonsingular semisimple fully stable
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module, M
′

is stable in M. Let N ≤ M , then (N
⋂

M
′

)≤ M
′

, so (N
⋂

M
′

) ≤⊕ M
′

(since M
′

is semisimple). It follows that M
′

= (N
⋂

M
′

)⊕W for some
W ≤ M

′

and hence M = Z2(M) ⊕ (N
⋂

M
′

) ⊕W . Hence (N
⋂

M
′

) ≤⊕ M .

On other hand, N

N
⋂

M
′
∼= N+M

′

M
′ ≤ M

M
′
∼= Z2(M). But Z2(M) is Z2-torsion.

Hence, N

N
⋂

M
′ is Z2-torision and then by (Proposition 1.1(4) (N

⋂

M
′

) ≤tes N .

But (N
⋂

M
′

) is stable in M
′

(since M
′

is fully stable) so N
⋂

M
′

is a fully
invariant submodule in M. Thus by Lemma (1.3) N

⋂

M
′

is fully invariant in
M. But N

⋂

M
′

is direct summand of M. Thus N
⋂

M
′

≤⊕ M ,N
⋂

M
′

≤ N ,
hence M is strongly t-semisimple.

(3) ⇒ (5) Let N ≤ M ,N ⊇ Z2(M). Since M = Z2(M)⊕M
′

, where M
′

is a
nonsingular semisimple fully stable,M

′

is stable in M.Then N = (Z2(M)⊕M
′

)
⋂

N = Z2(M) ⊕ (N
⋂

M
′

) by modular law. But N
⋂

M
′

) ≤ M
′

and M
′

is
semisimple implies(N

⋂

M
′

) ≤⊕ M
′

. It follows that (N
⋂

M
′

) ⊕ W = M
′

.
Hence M = Z2(M)⊕ (N

⋂

M
′

)⊕W = N⊕W . Thus N ≤⊕ M . Also M
(Z2(M))

∼=

M
′

and M
′

is a fully stable module and M
′

is stable in M, so that M
(Z2(M) is

fully stable semisimple and isomorphic to stable submodule of M.

(2) ⇒ (3) Since Z2(M) is t-closed, M
(Z2(M)) is nonsingular. By condition (2),

M
(Z2(M)) is semisimple, hence M

(Z2(M)) is projective (by [10, Coroallary 1.25,P.35]

. Now let π : M → M/(Z(2)(M)) be the natural epiomorphism and as M
(Z2(M))

is projective, we get kerπ = Z2(M)is a direct summand of M .Hence M =
Z2(M) ⊕ M

′

.Thus M
′ ∼= M

(Z2(M)) which is nonsingular semisimple fully stable

module. Then M
′

is nonsingular semisimple fully stable .Also M
′

is stable
submodule of M by condition (2).

(3) ⇒ (2) By condition (3),M = Z2(M) ⊕M
′

, where M
′

, is a nonsingular
semisimple fully stable module and M

′

is stable in M. It follows that M
(Z2(M))

∼=

M
′

. Thus M
(Z2(M)) is semisimple fully stable and isomorphic to stable submodule

M
′

of M.

(2) ⇒ (5) It follows directly (since (2) ⇔ (3) ⇒ (5) then(2) ⇒ (5)).

(5) ⇒ (2) Let N
Z2(M) ≤ M

Z2(M) . Then N ⊇ Z2(M), so by condition (5), N
is stable direct summand of M, so that N ⊕ W = M for some W ≤ M .Thus

N
(Z2(M))+

(W+Z2(M))
(Z2(M)) = M

(Z2(M)) . But we can show that N
(Z2(M))

⋂ (N+Z2(M))
(Z2(M)) = 0,

as follows:

Let x ∈ N
(Z2(M))

⋂ (W+Z2(M))
(Z2(M)) . Then x = n+Z2(M) = w+Z2(M) for some

n ∈ N ,w ∈ W , and so n − w ∈ Z2(M) ⊆ N . It follow that n − w = n1 for
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some n1 ∈ N and hence n − n1 = w ∈ N
⋂

W = 0. Thus x = 0 M

Z2(M)
and so

N
(Z2(M)) ⊕

(W+Z2(M))
Z2(M) = M

(Z2(M)) . This implies M
Z2(M) is semisimple. By condition

(5), M
(Z2(M)) fully stable and isomorphic to stable submodule of M . But M

Z2(M)

is nonsingular, so M
Z2(M) is projective and hence M = Z2(M) +M

′

. Thus M
′

is

nonsingular semisimple (since M
′ ∼= M

Z2(M)). It follows that M
′

is fully stable

module and M
′

is stable in M.

Now we shall give some other properties of strongly t-semisimple.

Recall that an R-module M is called quasi-Dedekind if Hom(M
N
,M) = 0

for all nonzero submodule N of M.Equivantally, M is quasi-Dedkind if for each
f ∈ End(M),f 6= 0, then kerf = 0 [10]

Proposition 2.4. If M is a quasi-Dedekind module, then M is t-semisimple
if and only if M is strongly t-semisimple.

Proof. ⇒ since M is quasi-Dedekind, then for each f ∈ EndM f 6= 0,
Kerf = 0, and hence kerf is stable and so that by [14], M is SS-module and
so that M is strongly t-semisimple by Remarks and Examples 2.2(8).

⇐ It is clear.

To prove the next result, we state and prove the following Lemma.

Lemma 2.5. Let N be a submodule of M and K is a direct summand of
M such that K ≤ N . If K is fully invariant submodule in M, then K is a fully
invariant submodule in N.

Proof. To prove K is a fully invariant submodule of N. Let ϕ : N → N be
an R-homomorphism, to prove ϕ(K) ≤ K.

Consider the sequence M
ρ
→ K

inc
→ N

ϕ
→ N

j
→ M . Where ρ is the natural

projection and i,j are the inclusion mapping. Then (j ◦ϕ ◦ i ◦ ρ) ∈ EndM , and
since K is a fully invariant in M, so (j ◦ϕ ◦ i ◦ ρ)(K) ⊆ K. But j ◦ϕ(ρ(K))=j ◦
ϕ(K)=ϕ(K), hence ϕ(K) ≤ K. Thus K is a fully invariant submodule of N.

Proposition 2.6. Every submodule of strongly t-semisimple module is
strongly t-semisimple.

Proof. Let N ≤ M , let W ≤ N , so W ≤ M . Since M is strongly t-
semisimple, there exists fully invariant direct summand K of M such thatK ≤tes

W ≤ N . As K ≤⊕ M , M = K ⊕K
′

for some K
′

≤ M then, N = N
⋂

(K ⊕K
′

)=K⊕ (K
′ ⋂⋂

N). So that K ≤⊕ N , and by Lemma (2.5) K is fully invariant
submodule of N. Therefore, K is fully invariant direct summand of N such that
K ≤tes W ≤ N .Thus N is a strongly t-semisimple module.

Now we consider the direct sum of strongly t-semisimple. First we no-
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tice that direct sum of strongly t-semisimple module need not be strongly t-
semisimple for example:

Consider R as R -module R is strongly t-semisimple. But M = R⊕R is not
strongly t-semisimple by Remarks and Examples 2.2(12). However, the direct
sum of strongly t-semisimple is strongly t-semisimple under certain condition.
Before giving our next result, we present the following lemma.

Lemma 2.7. Let M = M1 ⊕ M2 such that annM1 + annM2 = R.Then
Hom(M1,M2) = 0 and Hom(M2,M1) = 0.

Proof. since R = annM1+ annM2, then M1 = M1(annM1)+M1(annM2).
Put annM1 = A1, annM2 = A2, therefore M1 = M1A1 +M1A2 = M1A2, then
for each ϕ ∈ Hom(M1,M2),ϕ(M1) = ϕ(A2M1) = ϕ(M1)A2 ≤ M2A2 = 0,hence
ϕ = 0.Thus Hom(M1,M2) = 0. Similarly, Hom(M2,M1) = 0.

Theorem 2.8. Let M = M1 ⊕ M2 such that annM1 + annM2 = R.
Then M1,M2 are strongly t-semisimple if and only if M = M1⊕M2 is strongly
t-semisimple.

Proof. ⇐ By Proposition(2.6).

⇒ Let N ≤ M . Since annM1 + annM2 = R, N = N1 ⊕ N2 for some N1

and N2 submodules of M1 and M2 respectively. As M1 and M2 are strongly
t-semisimple, then there exist K1 ≤ M1 and K2 ≤ M2 such that K1 is a direct
summand of M1, K1 is fully invariant in M1 and K1 is t-essential in N1, K2 is
a direct summand of M2, K2 is fully invariant in M2 and K2 is t-essential in
N2.But K1 ≤

⊕ M1 andK2 ≤
⊕ M2 imply K1⊕K2 ≤

⊕ M1⊕M2 and K1 ≤tes N1,
K2 ≤tes N2 imply K1 ⊕K2 ≤tes N1 ⊕N2 by Proposition (1.2).

Now, let

ϕ ∈ End (M1,M2) ∼=

(

EndM1 Hom (M2,M1)
Hom (M1,M2) EndM2

)

=

(

EndM1 0
0 EndM2

)

so

ϕ =

(

ϕ1 0
0 ϕ2

)

for some ϕ1 ∈ EndM1, ϕ2 ∈ EndM2. Then ϕ(K1 ⊕K2 )=ϕ1(K1 )⊕ ϕ2 (K2 )
≤ K1 ⊕ K2 since K1 is fully invariant in M1 and K2 is fully invariant in M2.
Hence M is strongly t-semisimple.

Now we shall give other characterizations of strongly t-semisimple module.
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Proposition 2.9. The following statements are equivalent for a module
M, such that any direct summand has a unique complement:

(1) M is strongly t-semisimple,
(2) For each submodule N of M, there exists a decomposition M = K ⊕ L

such that K ≤ N and L is stable in M and N
⋂

L ≤ Z2 L,
(3) For each submodule N of M, N = K ⊕ K

′

such that K is a direct
summand stable in M and K

′

is Z2-torsion.

Proof. (1) ⇒ (2)
Let K be a complement of Z2(N) in N. Then K + Z2(N) ≤ess N and let
C be a complement of K ⊕ Z2(M).So K ⊕ Z2(M) ⊕ C ≤ess M and hence
K⊕Z2(M)⊕C ≤tes M . But M is strongly t-semisimple implies M t-semisimple,
hence K ⊕ Z2(M) ⊕ C=M ( by [4,Corollary 2.7].Put Z2(M) ⊕ C=L. Then
M = K⊕L and hence N = (K⊕L)

⋂

N= K⊕(N
⋂

L) (by modular law ). But
K+Z2(N) ≤ess N implies N

K
is Z2-torsion (by Proposition (1.1)).On other hand,

N
K

∼= N
⋂

L, so that N
⋂

L is Z2-torsion. Thus N
⋂

L=Z2(L
⋂

N) ≤ Z2(L).
Now, C is a complement of K ⊕ Z2(M) which is a direct summand of M, and
by hypothesis, C is a unique complement and hence by [2, Theorem(1.4.8)] C is
stable and hence L = Z2(M)⊕C is stable submodule in M. Thus M = K ⊕ L
is the desired decomposition.

(2) ⇒ (3) By condition (2) M = K ⊕ L such that K ≤ N , L is stable and
N

⋂

L ≤ Z2(L). Hence N = (K ⊕ L)
⋂

N = K ⊕ (L
⋂

N), put K
′

= L
⋂

N ,
so N = K ⊕K

′

, N
K

∼= K
′

= L
⋂

N is Z2-torsion, K is stable in M (since K is
complement of L which is direct summand of M).

(3) ⇒ (1) By condition (3), N = K ⊕K
′

, K ≤⊕ M and K is stable in M
and K

′

is Z2-torsion. Then K ≤⊕ M and K ≤ N and N
K

∼= K
′

is Z2-torsion.
Hence K ≤tes N and so that M is strongly t-semisimple.

Definition 2.10. (see [7]) An R-module M is called comultiplication if
annMannRN = N for every submodule N of M.

Lemma 2.11. Every comultiplication module is fully stable.

Proof. Let M be a comultiplication R-module. Then annMannRN = N
for all N ≤ M . Hence annMannR(xR) = xR for all cyclic submodules xR in
M .Thus M is fully stable, [2, Corollary(3.5)].

Corollary 2.12. Let M be a comultiplication R-module. Then M is
t-semisimple if and only if M is strongly t-semisimple.

Proof. ⇐ It is clear.

⇒ It follows directly by Lemma (2.11) and Remarks and Examples 2.2(6).
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Recall that an R-module M is called a principally injective if for any a ∈ R,
any homomorphism f : Ra → M extends to an R-homomorphism from RR to
M [12].

Corollary 2.13. Let M be a principally injective. Then M is t-semisimple
if and only if M strongly t-semisimple.

Proof. ⇐ It is clear.

⇒ M is principally injective implies that annMannR(x) = (x) for each
x ∈ R. Hence by [2, Corollary(3.5)] M is fully stable. Then by Remark and
Examples 2.2(5), M is strongly t-semisimple.

Corollary 2.14. (2.14):
M is injective R- module. Then M is t-semisimple R- module if and only if M
is strongly t-semisimple.

Definition 2.15. (2.15) [12]:
An R-module is called scalar if for all ϕ ∈ EndM , there exists r ∈ R such that
ϕ(x) = xr for all x ∈ M , where R is a commutative ring.

Proposition 2.16. (2.16):
Let M be a scalar R-module. Then M is t-semisimple if and only if M is strongly
t-semisimple, where R is commutative.

Proof: ⇐It is clear.
⇒ Let N≤ M, letϕ ∈ EndM . Since M is scalar, there exists r ∈ R such that
ϕ(x) = xr,for all x ∈ M . Hence ϕ(N) = Nr ≤ N and so that N is fully
invariant submodule. Thus M is duo. But M is duo and t-semisimple implies
M is strongly t-semisimple by Remarks and Examples 2.2(6).

Proposition 2.17. (2.17):
Let M be a duo R-module. Then the following statements are equivalent
(1) Every R-module is t-semisimple and Z2(M) is projective.
(2) Every R-module is strongly t-semisimple and Z2(M) is projective.
(3) R is semisimple.

Proof: (1) ⇒ (3)
Let M be an R-module. Then M is t-semisimple by hypothesis. Hence M =
Z2(M)⊕M

′

, where M
′

is a nonsingular semisimple. It follows that M
′

is pro-
jective, but by hypothesis Z2(M) is projective. Thus M is projective, that is
every R-module is projective and so by [11, Corollary 8.2.2(e)]R is semisimple.
(3) ⇒ (1)
Since R is semisimple, every R-module is semisimple by [11, Corollary 8.2.2(a)]
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Hence every R-module is t-semisimple. Also R is semisimple, then every R-
module is projective [11, Corollary 8.2.2(e)]. Thus Z2(M) is projective.
(1) ⇒ (2) It follows by Remark and Examples (2.2.(6))
(2) ⇒ (1) It is clear.

Proposition 2.18. (2.18):
Let M be a duo R-module if R is semisimple then every R-module is strongly
t-semisimple, and conversely hold if R is nonsingular.

Proof: ⇒ R is semisimple implies every R-module M is semisimple and
hence t-semisimple. But M is duo by hypothesis, so that M is strongly t-
semisimple by Remark and Examples 2.2(6).
⇐ By hypothesis, R is t-semisimple. But R is nonsingular, so R is semisimple
Now we introduce the following:

Definition 2.19. (2.19):
An R-module M is called t-uniform if every submodule of M is t-essential.

Proposition 2.20. (2.20):
If M is t-uniform then M is strongly t-semisimple.

Proof: Since M is t-uniform, (0) ≤tes M . Hence M
(0) is Z2-torsion (by propo-

sition. 1.1(4)); that is M is Z2-torsion (so M = Z2(M)). Now for all N ≤ M ,
Z2(N) = Z2(M)

⋂

N = N .Hence (0) ≤tes N(since (0) + Z2(N) = 0 + N =
N ≤ess N).But (0) is fully invariant direct summand of M .Thus M is strongly
t-semisimple.

Remark 2.21. (2.21):
A uniform module need not be t-uniform.

Example 2.22. (2.22):
Consider Z- module Z6, Z6 is singular, hence Z6 is Z2-torsion; that is Z2(Z6) =
Z6. Hence for each N ≤ Z6, N +Z2(Z6) = Z6 ≤ess Z6 and then by Proposition
(1.1),N ≤tes Z6. Thus Z6 is t-uniform. But Z6 is not uniform.

Remark 2.23. (2.23):
It is clear that t-uniform module need not uniform, as the following example
shows.

Example 2.24. (2.24):
Z6asZ−module,Z2(M) = Z6 = M ,(0) ≤tes M since (0)+Z2(M) = M ≤ess M ,
Let N1 =< 2 >≤tes M since < 2 > +Z2(M) = M ≤ess M , similarly N2 =<
3 >≤tes M ,N3 = M ≤tes M .Thus M is t-uniform, but M is not uniform.
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Remark 2.25. (2.25):
M is t-uniform then M

N
is t-semisimple for all N ≤ M .

Proof: For each N ≤ M , N ≤tes M . Then M
N

is Z2-torsion (by proposition
1.1(4)). Hence M

N
is strongly t-semisimple by Remarks and Examples 2.2(2).

3. Strongly t-Semisimple Rings

Proposition 3.1. (3.1):
Every commutative t-semisimple ring R is strongly t-semisimple ring R.

Proof: Since R is commutative ring, then R is duo R-module and t-semisimple,
implies R is strongly t-semisimple by Examples and Remarks 2.2(6).

Proposition 3.2. (3.2):
Let R be a commutative Artinian ring with RadR ≤tesR. Then R is strongly
t-semisimple. In particular every local Artinain ring is strongly t-semisimple.

Proof: By [4, Proposition 3.1 ], R is t-semisimple ring. Hence by Proposi-
tion (3.1), R is strongly t-semisimple.

Example 3.3. (3.3):
The ring ZP∞ is Artnian and RadZP∞=ZP∞ ≤ess ZP∞. Hence by Proposition
(3.2), ZP∞ is strongly t-semisimple.

Proposition 3.4. (3.4):
The following statements are equivalent for a commutative ring
(1) R is strongly t-semisimple;
(2) R is t-semisimple;
(3) Every R-module is t-semisimple;
(4) Every nonsingular R-module is semisimple;
(5) Every nonsingular R-module is injective;
(6)Every R-module M there is an injective submodule M

′

such that M = Z2

(M)⊕M
′

;
(7) R

Z2(R) is a semisimple ring.

(8) Every maximal ideal which contains Z2 (R) is a direct summand;
(9) R is a direct product of two ring, one is Z2- torsion and other is semisimple
ring.

Proof: (1) ⇒ (2) It is clear
(2) ⇒ (1) It is follows by (Proposition 3.1).
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(2) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (6) ⇔ (7) [3, Theorem (3.2)].
(2) ⇔ (8) ⇔ (9) It follows by [3, Theorem 3.8]

Corollary 3.5. (3.5) [4]:
Let R be a t-semisimple ring.
(1) A maximal right ideal I of R is a direct summand if and only if it contains
Z2(R).
(2) A minimal right ideal J of R is a direct summand if and only if it is non-
singular.

Corollary 3.6. (3.6):
Let R be a strongly t-semisimple. A maximal ideal I of R is a direct summand
if and only if I ⊇ Z2(R). A minimum ideal I of R is a direct summand if and
only if I is nonsingular.

Proof: It follows directly by (Corollary (3.5)).
Recall that a ring R is called quasi-Frobenius if R is self-injective and Noethe-
rian.Equivalently ”R is called quasi-Frobenius if R is self-injective and Artinian
[9].

Corollary 3.7. (3.7):
Let R be a right nonsingular. Then R is quasi-Frobenius if and only if R is
semisimple [3].

Proposition 3.8. (3.8):
Let R be a nonsingular ring. Then the following statements are equivalent:
(1) R is quasi-Frobenius;
(2) R is semisimple ;
(3) R is t-semisimple ( R is strongly t-semisimple);
(4) Every R-module is t-semisimple;
(5) Every nonsingular R-module is semisimple;
(6) Every nonsingular R-module is injective;
(7) For every R-module M, there exists an injective submodule M

′

such that
M = Z2 (M) ⊕ M

′

;
(8) R

Z2(R) is a semisimple ring.

Proof: (3) ⇔ (4) ⇔ (5) ⇔ (6) ⇔ (7) ⇔ (8) by Proposition (3.4).
(1) ⇔ (2) It follows by Corollary (3.7)
(2) ⇔ (3) It follows by [3] and Proposition(3.4).

Proposition 3.9. (3.9):
The following statements are equivalent for a commutative ring R
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(1)R is t-semisimple (R is strongly t-semisimple );
(2) Every weak duo module (SS-module) is strongly t-semisimple;
(3) Every R-module is t-semisimple.

Proof: (1) ⇔ (3) by Proposition (3.4)
(3) ⇔ (2) It follows by Remarks Examples 2.5(8).
(2) ⇒ (1) R is duo (because R is commutative ring with unity), so R is strongly
t-semisimple.

Proposition 3.10. (3.10):
The following statements are equivalent for a commutative ring R:
(1) R is t-semisimple;
(2) Every nonsingualr R-module is strongly t-semisimple;
(3) For every R-module M, there exists a strongly t-semisimple R-module M

′

such that M = Z2(M) ⊕ M
′

.

Proof: (1) ⇒ (2) Let M be a nonsingular R-module. Hence M is t-
semisimple by Proposition (3.4) (1 ⇒ 3), also M is injective by (Proposition
(3.4) ( (1) ⇒ (5)). It follows that M is strongly t-semisimple by (Corollary
(2.15))
(2) ⇒ (1) By condition (2) every nonsingular module M is strongly t-semisimple,
hence every nonsingular module M is t-semisimple. Thus every nonsingular is
semisimple by (Remark and Examples 2.2(6)). It follows that R is t-semisimple
by (Proposition (3.4) (4) ⇒ (1)).
(1) ⇒ (3) By (Proposition (3.4) (1) ⇒ (6)), M = Z2(M) ⊕ M

′

for some in-
jective R-module M

′

by But M
′ ∼= M

Z2(M) which is nonsingular module. Hence

M
′

is t-semisimple by (proposition (3.4) (1) ⇒ (4)). Thus M
′

is t-semisimple
and injective, so M

′

is strongly t-semisimple by Corollary (2.15).
(3) ⇒ (1) M = Z2(M) ⊕ M

′

, where M
′

is strongly t-semisimple. Hence M
′

is t-semisimple. But M
′ ∼= M

Z2(M) which is nonsingular, so M
′

is nonsingular

t-semisimple. Thus M
′

is semisimple by Remarks and Examples 2.2(6). But
M

′

is injective. Thus R is t-semisimple by (Proposition (3.4) (6) ⇒ (1)).

References

[1] Abas, M.S.(1991). On Fully Stable Modules, Ph.D. Thesis, College of Science, University
of Baghdad.

[2] Asgari, Sh., Haghany, A. (2011).t-Extending modules and t-Baer modules,
Comm.Algebra, 39:1605-1623.

[3] Asgari, Sh., Haghany, A.,Tolooei Y. (2013). T-semisimple modules and T-semisimple
rings comm. Algebra,41:5,1882-1902.



STRONGLY T-SEMISIMPLE MODULES AND... 41

[4] Asgri, Sh., Haghany, A.(2010).Densely co-Hopfian modules. Journal of Algebra and Its
Aplications 9:989-1000.

[5] Chatters, A. W., Khuri, S. M. (1980). Endomorphism rings of modules over nonsingular
CS rings, J. London Math. Soc. 21:434-444 .

[6] Chen, J., Ding, N., Yousif, M. F. (2004). On Noetherian rings with essential socle, J.

[7] Clark, J., Lomp, C., Vanaja N., Wisbauer, R. (2006). Lifting Modules. Frontiers inMath-
ematics, Birkhauser Verlag, Basel.

[8] Dung, N. V., Huynh, D. V., Smith, P. F, Wisbauer, R. (1994). ExtendingModules.Pitman
Research Notes in Mathematics 313, Longman, Harlow.

[9] Goodearl K.R., Ring Theory, Non Singular Rings and Modules,(1976) Marcel Dekker,
Inc. New York and Basel.

[10] Kasch F.Modules and Rings (1982), Acad. Press, London.

[11] Mijbass A .S. , ,1997.” Quasi Dedekind Modules ” ,Ph.D .Thesis ,College of Science
University of Baghdad .

[12] Lam, T. Y. (1998). Lectures on Modules and Rings. Graduate Texts in Mathematics,
Vol. 189, Springer-Verlag, New York/Berlin.

[13] Patrick F. Smith,(2015) .Fully Invariant Multiplication Modules. Palestine Journal of
Mathematics, 4: 462470.

[14] Tamadher A. I.(2015). Modules related to Rickart Modules. Ph.D. Thesis, College of
Science,Al- Mustansiriyah University.

[15] Wisbauer R. (1991).Foundations of Modules and Rings theory, reading: Gordon and
Breach.



42


