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Abstract: In this paper, we introduce the notions of strongly t-semisimple modules and
strongly t-semisimple rings as a generalization of semisimple modules, rings respectively. We
investigate many characterizations and properties of each of these concepts. An R-module
is called strongly t-semisimple if for each submodule N of M there exists a fully invariant
direct summand K such that K t-essential in N. Also, the direct sum of strongly t-semisimple
modules and homomorvarphic image of strongly t-semisimple is strongly t-semisimple.

A ring R is called right strongly t-semisimple if Rgr is strongly t-semisimple. Various

characterizations of right strongly t-semisimple rings are given.
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1. Introduction

Through this paper R be a ring with unity and M is a right R-module. Let
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Zy (M) be the second singular (or Goldi torsion) of M which is defined by
Z(M/(Z(M))) = (Z2(M))/(Z(M)) where Z(M) is the singular submodule of
M A module M is called Zs-torsion if Z5(M) = M and a ring R is called
right Zs-torsion if Zs(Rp) = Rg[8].,A submodule A of an R-module M is
said to be essential in M (denoted by A <. M), if A(YW(0) for every non-
zero submodule W of M. Equivalently A <.ss M if whenever AN\ W = 0,
then W = 0 [9],Asgari and Haghany [4] introduced the concept of t-essential
submodules as generalization of essential submodules. A submodule N of M is
said to be t-essential in M (denoted by (N <;s M) if for every submodule B
of M, N B < Zy(M) implies that B < Zy(M). It is clear that every essential
submodule is t-essential, but not conversely. However, the two concepts are
equivalent under the class of nonsingular modules. A submodule N of M is
called fully invariant if f(N) < N for every R-endomorphism f of M.Clearly
0 and M are fully invariant submodules of M [15] . M is called duo module
if every submodule of M is fully invariant. A submodule N of an R-module
is called stable if for each homomorphism f:N — M,f(N) < N. A module is
called fully stable if every submodule of M is stable[1]. Asgari and Haghany [3]
introduced the notion of t-semisimple modules as a generalization of semisimple
modules. A module M is t-semisimple if for every submodule N of M, there
exists a direct summand K such that K <;.s N. In this paper we introduce
the notion of strongly t-semisimple modules as a generalization of t-semisimple
modules. An R-module is called strongly ¢-semisimple if for each submodule
N of M there exists a fully invariant direct summand K such that K <;s V.
It is clear that the class of strongly ¢-semisimple modules contains the class of
t-semisimple. This paper consists of three sections. In Section 2 we introduce
the concept of strongly ¢-semisimple and giving many characterizations and
properties of this class of modules.

Section 3, concerns with strongly ¢-semisimple rings. Several, characteriza-
tion of commutative strongly ¢-semisimple ring. Also we give some character-
izations of nonsingular strongly ¢-semisimple ring. First, we list some known
result, which will be needed in our work.

Proposition 1.1. (see [2]) The following statements are equivalent for a
submodule A of an R-module.

(1) A is t-essential in M;

(2) (A4 Z3(M))/Z2(M) is essential in M/Zy(M);
(3) A+ Zy(M) is essential in M ;

(4) M /A is Zy-torsion.

Lemma 1.2. (see [4]) Let Ay be submodule of M\ for all X in a set A.
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(1) If A is a finite and Ay <tes My, then () | Ax<tes[ 5 |Mx for all X € A.
(2) PA Ay <pes © AM)y, If and only if Ay <ies M) for all A € A.

Lemma 1.3. (see [13]) Let R be a ring and let L < K be submodules of
an R-module M such that L is a fully invariant submodule of K and K is a
fully invariant submodule of M. Then L is a fully invariant submodule of M.

Theorem 1.4. (see [3]) The following statements are equivalent for a
module M:

(1) M is t-semisimple;

(2) M/Z5(M)) is semisimple;

(3) M = Zy(M @ M') where M is a non-singular semisimple module;

(4) Every nonsingular submodule of M is a direct summand;

(5) Every submodule of M which contains Zs(M) is a direct summand.

2. Strongly t-Semisimple Modules

Definition 2.1. An R-module is called strongly t-semisimple if for each
submodule N of M there exists a fully invariant direct summand K such that
K Stes N.

Remarks and Examples. (1) It is clear that every strongly t-semisimple
module is t-semisimple, but the convers is not true as we shall see later.

(2) If M is Za-torsion, then M is strongly t-semisimple.

Proof. Since M is Zs-torsion, Za(M) = M. So that for all A < M, Z3(A)
= Zo(M)(YA= M (A = A, then (0) +Z2(A)=A <css A, Thus (0) <45 A for
all A < M.But (0) is a direct summand of M, and (0) is fully invariant. Hence
M is strongly t-semisimple.

(3) Every singular module is strongly t-semisimple.

Proof. Let M be a singular R-module. Then Z(M) = M, it follows that
Zo(M)=Z(M)= M. Thus M is Z5 torsion, hence M is strongly t-semisimple.
Thus, in particular Z,, as Z-module is strongly t-semisimple for all n € Z,
n>1.

(4) The converse of (3) is not true in general, for example Z4 as Z4 -module
is not singular, but it is Zy-torsion, so it is strongly t-semisimple.

(5) If M is t-semisimple module and weak duo (SS-module). Then M is
strongly t-semisimple, where M is a weak duo(or SS-module) if every direct
summand of M is fully invariant.
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Proof. Let N < M, since M is t-semisimple, there exists K < M such
that K <4s N. But M is SS-module, so K is stable; hence K is fully invariant
direct summand. Thus M is strongly t-semisimple,where M is a weak duo(or
SS-module) if every direct summand of M is fully invariant.

(6) If M is t-semisimple and duo (or fully stable), then M is strongly t-
semisimple.
Hence every t-semisimple multiplication R-module is strongly t-semisimple.

(7) If M is cyclic t-semisimple module over commutative ring R then M is
a strongly t-semisimple.

Proof. Since M is cyclic module over commutative ring, then M is a mul-
tiplication module. Thus M is duo. Therefor the result follows by part (9).

(8) M = Z,, ® Z as Z-module is not t-semisimple. For all n € Z,, n > 1.
Proof. Suppose M is t-semisimple. Then M/Z,, = Z is t-semisimple [4,
Corollary 2.4] which is a contradiction.

(9) t-semisimple module need not be strongly t-semisimple, for example:

Example 2.2. Let T'= M & M where M is a non-singular semisimple
R-module, M # (0). Hence T is semisimple, and so 7" is a t-semisimple, let
N = M@&(0), so there exists K < M such that K <;.s N. Hence K = K;®(0)
for some Ky < M, if K; = (0), then K = < (0,0) > and K <,,, M & (0).
But < (0,0) >+ Zy (M + (0)) <ess M @ (0) (by Proposition 1.1.(3)) Thus
Zy(M) <ess M. But Zo(M) = (0), hence (0) <.ss M and so M = (0), which is
a contradiction. It follows that K; # (0), so K #< (0,0) >.But in this case K
is not fully invariant submodule of T. To see this:

Let f: T — T defined by T'(x,y) = (y,x), for all (z,y) € T, Then T'(K; @
(0)) = (0) ® K1 <# K; & (0). Thus K = K; & (0) is not fully invariant
submodule of T, such that K <;;N.Therefore T is not strongly t-semisimple.

In particular, R as R-module is simple non-singular R -module, so R & R
as R -module is semisimple and so it is t-semisimple .But R @ R is not strongly
t-semisimple:

To see this, let N = R & (0). As < (0,0) > is only direct summand fully
invariant of R @ R, such that < (0,0) >< N = R(0).But < (0,0) ><# 2010
N because if we assume that < (0,0) ><;s N then < (0,0) > +Z5(N) <gss N,
so that < (0,0) >+ < (0,0) >=< (0,0) ><.ss N which is a contradiction.

Now we shall give some characterizations of strongly t-semisimple.

Theorem 2.3. The following statements are equivalent for an R -module
M:
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(1) M is strongly t-semisimple,

(2) % is fully stable semisimple and isomorphic to a stable submodule
of M,

(3) M = Zy(M) ® M’ where M'is a nonsingular semisimple fully stable
module and M’ is a stable submodule in M,

(4) Every nonsingular submodule of M is stable direct summand,

(5) Every submodule of M which contains Zy(M) is a direct summand of

M and % is fully stable and isomorphic to a stable submodule of M.

Proof. (1) = (4) Let N be a nonsingular submodule of M. Since M is
strongly t-semisimple, there exists a fully invariant direct summand K of M
such that K <;s N. Assume that M = K & K " for some K' < M.Hence
N=(K®K )NNandso N = K& (K ()N) by modular law. Thus K < N
and ¥ = (NN K'). But K <5 N implies & is Zo-torsion that is Zo(¥) = &
by Proposition (1.1). On the other hand (N ()K" ) < N and N is nonsingular, so
(NN K') is nonsingular submodule, and hence & is nonsingular, which implies
that Zo (¥£) = 0.Thus & = 0 and hence N = K. Therefore N is a fully invariant

direct summand, and hence N is a stable direct summand.

(4) = (3) Let M be a complement of Zo(M).Hence M ®©Zo(M) <ess M
And so M' <;.s M by Proposition (1.1(3)).Thus % is Zs-torsion, by proposi-
tion (1.1(4)).We claim that M is nonsingular. To explain our assertion, suppose
T e Z(M/ ), so x € M' < M and ann(z) <gss R. Hence ann(x) <;,s R and
this implies 2 € Zo(M). Thus z € Zo(M)(\ M = (0), thus x=0 and M’ is
a nonsingular. So that by hypothesis, M " is a stable direct summand of M

and so that M = L & M’ for some L < M.Thus L & % which is Zs-torsion,

hence L is Zo-torsion .On other hand, Zy(M) = Zy(M' )+ Zy(L) =0+ L = L.
It follows that M = Zy(M) @® M', M is a nonsingular. Now let N < M,
so N is a nonsingular and hence N < M by hypothesis. It follows that
M = N@W for some W < M and hence M' = (N @ W) M  and so M’
= No (WM ) by modular law. Thus N < M  and hence M is semisimple
Next to prove M’ is fully stable. It is sufficient to prove that every submodule
of M is fully invariant, so let N < M < M and let f : M' — M'. Then
iofop e End(M), where i inclusion map from M’ to M and p is the projection
of M onto M’. Then (i o f o p)(N) < N since N is stable in M (by hypoth-
esis). Now (io fop)(N) = (io f(p(N)), but N < M',so p(N) = N. Thus
iof(p(N)) =io f(N)= f(IN) < N. Thus N is fully invariant submodule of
M/, but N < M, so that N is stable in M and M’ is fully stable.

(3) = (1) Let M = Zy(M) @& M', M is nonsingular semisimple fully stable
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module, M’ is stable in M. Let N < M, then (N M )< M, so (NO\M'
) < M’ (since M is semisimple). It follows that M = (N (M )@ W for some
W < M'and hence M = Zo(M)® (NO\M )@ W . Hence (NO\M' )< M.

On other hand, + nM >~ NHL < M~ 7,(M). But Zy(M) is Zy-torsion.
Hence,ﬁ is Zo-torision and then by (Proposition 1.1(4) (N (M") <;es N.

But (N (M) is stable in M’ (since M’ is fully stable) so N (M is a fully
invariant submodule in M. Thus by Lemma (1.3) N (M is fully invariant in
M. But N M'is direct summand of M. Thus NO\M < M,NOM < N,
hence M is strongly t-semisimple.

(3) = (5) Let N < M,N D Zy(M). Since M = Zy(M)@® M, where M is a
nonsingular semisimple fully stable, M is stable in M.Then N = (Zy(M) & M’
YN = Zo(M) @ (N M) by modular law. But N\ M ) < M and M'is
semisimple implies(tN(\M') < M. Tt follows that (NO\M )& W = M.
Hence M = Zy(M)® (N M )YeW = NoW. Thus N < M. Also Z0n) (M)) =
M’ and M’ is a fully stable module and M’ is stable in M, so that 7l M) is
fully stable semisimple and isomorphic to stable submodule of M.

(2) = (3) Since Z3(M) is t—closed,% is nonsingular. By condition (2),
% is semisimple, hence % is projective (by [10, Coroallary 1.25,P.35]
. Now let m: M — M/(Z2)(M)) be the natural epiomorphism and as %
is projective, we get kerm = Zs(M)is a direct summand of M .Hence M =
Zy(M)d M "Thus M = % which is nonsingular semisimple fully stable
module. Then M’ is nonsingular semisimple fully stable .Also M " is stable
submodule of M by condition (2).

(3) = (2) By condition (3),M = Z5(M) @ M', where M, is a nonsingular
semisimple fully stable module and M'is stable in M. It follows that Z00) ( ) = =
M'. Thus
M’ of M.

7t M)) is semisimple fully stable and isomorphic to stable submodule

(2) = (5) It follows directly (since (2) < (3) = (5) then(2) = (5)).

(5) = (2) Let (M) <z ( 7 - Then N 2 Zy(M), so by condition (5), N
is stable direct summand of M sothat NoW =M for some W < M.Thus

(W+Zo(M)) (N+Z2(M)) _
(Zzé t (22(12‘/1)) = iy~ But we can show that 70 () ST = 0.
as follows:

Let T € ¢ ﬂ (V[(/;j?w . Then T = n+ Zy(M) = w+ Zy(M) for some

nENwEW andson—weZg(M)gN. It follow that n — w = ny for
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some n; € N and hence n —n; =w € N(\W = 0. Thus z =0 J\(/[) and so
Zo (M

N 69(W+ oM)) _ M
(Z2(M)) Zo(M) T (Z2(M))"

(5), D) ( ) fully stable and isomorphic to stable submodule of M . But

This implies - Q/IM) is semisimple. By condition

Z2 (M )
is nonsingular, so ZQJE/IM) is projective and hence M = Zo(M) + M. Thus M 'is

nonsingular semisimple (since M = )) It follows that M’ is fully stable

= Za(M
module and M is stable in M.
Now we shall give some other properties of strongly t-semisimple.
Recall that an R-module M is called quasi-Dedekind if H om(%,M ) =10

for all nonzero submodule N of M.Equivantally, M is quasi-Dedkind if for each
f e EndM),f #0, then kerf =0 [10]

Proposition 2.4. If M is a quasi-Dedekind module, then M is t-semisimple
if and only if M is strongly t-semisimple.

Proof. = since M is quasi-Dedekind, then for each f € EndM f # 0,
Kerf = 0, and hence kerf is stable and so that by [14], M is SS-module and
so that M is strongly t-semisimple by Remarks and Examples 2.2(8).

< It is clear.

To prove the next result, we state and prove the following Lemma.

Lemma 2.5. Let N be a submodule of M and K is a direct summand of
M such that K < N. If K is fully invariant submodule in M, then K is a fully
invariant submodule in N.

Proof. To prove K is a fully invariant submodule of N. Let ¢ : N — N be
an R-homomorphism, to prove p(K) < K.

inc

Consider the sequence M 5 K ™ N & N Jy M. Where p is the natural
projection and i,j are the inclusion mapping. Then (jopoiop) € EndM, and
since K is a fully invariant in M, so (jopoiop)(K) C K. But jop(p(K))=jo
o(K)=p(K), hence p(K) < K. Thus K is a fully invariant submodule of N.

Proposition 2.6. Every submodule of strongly t-semisimple module is
strongly t-semisimple.

Proof. Let N < M, let W < N, so W < M. Since M is strongly t-
semisimple, there exists fully invariant direct summand K of M such that K <;.s
W<N. AsK< M,M=K&K for some K' <M then, N=N(K&K’
)=K @ (K (N N). So that K < N, and by Lemma (2.5) K is fully invariant
submodule of N. Therefore, K is fully invariant direct summand of N such that
K <4es W < N.Thus N is a strongly t-semisimple module.

Now we consider the direct sum of strongly t-semisimple. First we no-
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tice that direct sum of strongly t-semisimple module need not be strongly t-
semisimple for example:

Consider R as R -module R is strongly t-semisimple. But M = R® R is not
strongly t-semisimple by Remarks and Examples 2.2(12). However, the direct
sum of strongly t-semisimple is strongly t-semisimple under certain condition.
Before giving our next result, we present the following lemma.

Lemma 2.7. Let M = M; ® My such that annMy + annMs = R.Then
Hom(My, My) =0 and Hom(Ms, M) = 0.

Proof. since R = annM;j + annMs, then My = My (annMy) + My (annMs).
Put annM; = A1, annMsy = As, therefore My = My Ay + M1 Ay = My As, then
for each (NS Hom(Ml, MQ),QO(Ml) = QO(AQMl) = gO(Ml)AQ < MyAy = 0,hence
¢ = 0.Thus Hom(Mj, Ms) = 0. Similarly, Hom(Ma, M;) = 0.

Theorem 2.8. Let M = M; ®& My such that annM; + annMy = R.
Then My, My are strongly t-semisimple if and only if M = M, & M, is strongly
t-semisimple.

Proof. < By Proposition(2.6).

= Let N < M. Since annMy + annMy; = R, N = N1 & N5 for some N
and Ny submodules of My and Ms respectively. As M; and My are strongly
t-semisimple, then there exist K; < M; and Ky < M, such that K is a direct
summand of My, K; is fully invariant in M7 and K is t-essential in Ny, Ky is
a direct summand of My, Ks is fully invariant in Ms and Ks is t-essential in
No.But K1 < Mjand Ko < My imply K1 Ko < M@ My and Kp <ges Ny,
Ky <ies No imply K1 @ Ko <es N1 & Ny by Proposition (1.2).

Now, let

~ El’ldMl Hom MQ,Ml
SDEEHd(MlyMQ): < Hom(Ml,Mg) El'(ldMQ ) >

. End M1 0
N 0 End M,

SO
_ (¢ O
v < 0 ¢ )
for some 1 € End My, ¢ € End Ms. Then ¢(K1 ® Ko )=p1(K1 ) ® @2 (K2 )
< K1 @ Ky since K is fully invariant in M7 and Ky is fully invariant in Mo.

Hence M is strongly t-semisimple.
Now we shall give other characterizations of strongly t-semisimple module.
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Proposition 2.9. The following statements are equivalent for a module
M, such that any direct summand has a unique complement:

(1) M is strongly t-semisimple,

(2) For each submodule N of M, there exists a decomposition M = K & L
such that K < N and L is stable in M and N (\L < Z5 L,

(3) For each submodule N of M, N = K @& K' such that K is a direct
summand stable in M and K’ is Zo-torsion.

Proof. (1) = (2)

Let K be a complement of Z3(N) in N. Then K + Z3(N) <.ss N and let
C be a complement of K @ Zy(M).So K @ Zo(M) & C <.ss M and hence
K®Zy(M)®dC <yes M . But M is strongly t-semisimple implies M t-semisimple,
hence K & Zy(M) & C=M ( by [4,Corollary 2.7].Put Zy(M) & C=L. Then
M = K®Land hence N = (K@ L)\ N= K& (N (L) (by modular law ). But
K+Z5(N) <ess N implies £ is Zo-torsion (by Proposition (1.1)).On other hand,
X =~ NNL, so that N (L is Zo-torsion. Thus N (L=Zo(L(N) < Z(L).
Now, C is a complement of K & Z3(M) which is a direct summand of M, and
by hypothesis, C is a unique complement and hence by [2, Theorem(1.4.8)] C is
stable and hence L = Z3(M) & C'is stable submodule in M. Thus M = K & L
is the desired decomposition.

(2) = (3) By condition (2) M = K @& L such that K < N, L is stable and
NNL < Zy(L). Hence N = (K ® L)(\N = K @ (L(\N), put K" = LN,
soN=KaK, A K' = LN is Zy-torsion, K is stable in M (since K is
complement of L which is direct summand of M).

(3) = (1) By condition (3), N =K &K', K < M and K is stable in M
and K is Zs-torsion. Then K < M and K < N and ¥ = K’ is Zo-torsion.
Hence K <;s N and so that M is strongly t-semisimple.

Definition 2.10. (see [7]) An R-module M is called comultiplication if
annyranngN = N for every submodule N of M.

Lemma 2.11. Every comultiplication module is fully stable.

Proof. Let M be a comultiplication R-module. Then annyjanngN = N
for all N < M. Hence annyanng(xR) = xR for all cyclic submodules xR in
M .Thus M is fully stable, [2, Corollary(3.5)].

Corollary 2.12. Let M be a comultiplication R-module. Then M is
t-semisimple if and only if M is strongly t-semisimple.

Proof. < It is clear.

= It follows directly by Lemma (2.11) and Remarks and Examples 2.2(6).
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Recall that an R-module M is called a principally injective if for any a € R,
any homomorphism f : Ra — M extends to an R-homomorphism from Rp to
M [12].

Corollary 2.13. Let M be a principally injective. Then M is t-semisimple
if and only if M strongly t-semisimple.

Proof. < It is clear.

= M is principally injective implies that annyranng(z) = (z) for each
x € R. Hence by [2, Corollary(3.5)] M is fully stable. Then by Remark and
Examples 2.2(5), M is strongly t-semisimple.

Corollary 2.14. (2.14):
M is injective R- module. Then M is t-semisimple R- module if and only if M
is strongly t-semisimple.

Definition 2.15. (2.15) [12]:
An R-module is called scalar if for all ¢ € End M, there exists r € R such that
o(x) = zr for all x € M, where R is a commutative ring.

Proposition 2.16. (2.16):
Let M be a scalar R-module. Then M is t-semisimple if and only if M is strongly
t-semisimple, where R is commutative.

Proof: <1t is clear.
= Let N< M, letyp € End M. Since M is scalar, there exists r € R such that
o(x) = arfor all x € M. Hence ¢(N) = Nr < N and so that N is fully
invariant submodule. Thus M is duo. But M is duo and t-semisimple implies
M is strongly t-semisimple by Remarks and Examples 2.2(6).

Proposition 2.17. (2.17):
Let M be a duo R-module. Then the following statements are equivalent
(1) Every R-module is t-semisimple and Zy(M) is projective.
(2) Every R-module is strongly t-semisimple and Zs(M) is projective.
(3) R is semisimple.

Proof: (1) = (3)
Let M be an R-module. Then M is t-semisimple by hypothesis. Hence M =
Zo(M) @ M', where M’ is a nonsingular semisimple. It follows that M’ is pro-
jective, but by hypothesis Zo(M) is projective. Thus M is projective, that is
every R-module is projective and so by [11, Corollary 8.2.2(e)]R is semisimple.
(3) = (1)
Since R is semisimple, every R-module is semisimple by [11, Corollary 8.2.2(a)]
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Hence every R-module is t-semisimple. Also R is semisimple, then every R-
module is projective [11, Corollary 8.2.2(e)]. Thus Z3(M) is projective.

(1) = (2) It follows by Remark and Examples (2.2.(6))

(2) = (1) It is clear.

Proposition 2.18. (2.18):
Let M be a duo R-module if R is semisimple then every R-module is strongly
t-semisimple, and conversely hold if R is nonsingular.

Proof: = R is semisimple implies every R-module M is semisimple and
hence t-semisimple. But M is duo by hypothesis, so that M is strongly t-
semisimple by Remark and Examples 2.2(6).
< By hypothesis, R is t-semisimple. But R is nonsingular, so R is semisimple
Now we introduce the following:

Definition 2.19. (2.19):
An R-module M is called t-uniform if every submodule of M is t-essential.

Proposition 2.20. (2.20):
If M is t-uniform then M is strongly t-semisimple.

Proof: Since M is t-uniform, (0) <4s M . Hence % is Zs-torsion (by propo-
sition. 1.1(4)); that is M is Zs-torsion (so M = Z(M)). Now for all N < M,
Zy(N) = Zy(M) (YN = N.Hence (0) <tes N(since (0) + Zo(N) = 0+ N =
N <css N).But (0) is fully invariant direct summand of M .Thus M is strongly

t-semisimple.

Remark 2.21. (2.21):
A uniform module need not be t-uniform.

Example 2.22. (2.22):
Consider Z- module Zg, Zg is singular, hence Zg is Zo-torsion; that is Zo(Zg) =
Zg. Hence for each N < Zg, N + Z3(Zg) = Zg <ess Zg and then by Proposition
(1.1),N <ies Zg. Thus Zg is t-uniform. But Zs is not uniform.

Remark 2.23. (2.23):
It is clear that t-uniform module need not uniform, as the following example
shows.

Example 2.24. (2.24):
ZeasZ —module,Zo(M) = Zg = M,(0) <tes M since (0) + Za(M) = M <55 M,
Let Ny =< 2 ><4es M since < 2 > +75(M) = M <55 M, similarly Ny =<
3 ><tes M,N3 = M <;os M. Thus M is t-uniform, but M is not uniform.
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Remark 2.25. (2.25):
M is t-uniform then % is t-semisimple for all N < M.

Proof: For each N < M, N <j.s M. Then % is Za-torsion (by proposition
1.1(4)). Hence & is strongly t-semisimple by Remarks and Examples 2.2(2).

3. Strongly t-Semisimple Rings

Proposition 3.1. (3.1):
Every commutative t-semisimple ring R is strongly t-semisimple ring R.

Proof: Since R is commutative ring, then R is duo R-module and t-semisimple,
implies R is strongly t-semisimple by Examples and Remarks 2.2(6).

Proposition 3.2. (3.2):
Let R be a commutative Artinian ring with RadR <;.sR. Then R is strongly
t-semisimple. In particular every local Artinain ring is strongly t-semisimple.

Proof: By [4, Proposition 3.1 ], R is t-semisimple ring. Hence by Proposi-
tion (3.1), R is strongly t-semisimple.

Example 3.3. (3.3):
The ring Zpe is Artnian and RadZp<=Zpe <.ss Zpe. Hence by Proposition
(3.2), Zpeo is strongly t-semisimple.

Proposition 3.4. (3.4):
The following statements are equivalent for a commutative ring
(1) R is strongly t-semisimple;
(2) R is t-semisimple;
(3) Every R-module is t-semisimple;
(4) Every nonsingular R-module is semisimple;
(5) Every nonsingular R-module is injective;
(6)Every R-module M there is an injective submodule M’ such that M = Z,
(M) & M';
(7) % is a semisimple ring.
(8) Every maximal ideal which contains Zs (R) is a direct summand;
(9) R is a direct product of two ring, one is Zs- torsion and other is semisimple
ring.

Proof: (1) = (2) It is clear
(2) = (1) It is follows by (Proposition 3.1).
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(2) = 3)e (4) < (5) < (6) < (7) [3, Theorem (3.2)].
(2) & (8) & (9) It follows by [3, Theorem 3.8]

Corollary 3.5. (3.5) [4]:
Let R be a t-semisimple ring.
(1) A maximal right ideal I of R is a direct summand if and only if it contains
Z5(R).
(2) A minimal right ideal J of R is a direct summand if and only if it is non-
singular.

Corollary 3.6. (3.6):
Let R be a strongly t-semisimple. A maximal ideal I of R is a direct summand
if and only if I O Z3(R). A minimum ideal I of R is a direct summand if and
only if I is nonsingular.

Proof: It follows directly by (Corollary (3.5)).
Recall that a ring R is called quasi-Frobenius if R is self-injective and Noethe-
rian.Equivalently "R is called quasi-Frobenius if R is self-injective and Artinian

[9].

Corollary 3.7. (3.7):
Let R be a right nonsingular. Then R is quasi-Frobenius if and only if R is
semisimple [3].

Proposition 3.8. (3.8):
Let R be a nonsingular ring. Then the following statements are equivalent:
(1) R is quasi-Frobenius;
(2) R is semisimple ;
(3) R is t-semisimple ( R is strongly t-semisimple);
(4) Every R-module is t-semisimple;
(5) Every nonsingular R-module is semisimple;
(6) Every nonsingular R-module is injective;
(7) For every R-module M, there exists an injective submodule M’ such that
M =27y (M) & M;

(8) ng(zR) is a semisimple ring.

Proof: (3) & (4) & (5) & (6) < (7) < (8) by Proposition (3.4).
(1) & (2) It follows by Corollary (3.7)
(2) < (3) It follows by [3] and Proposition(3.4).

Proposition 3.9. (3.9):
The following statements are equivalent for a commutative ring R
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(1)R is t-semisimple (R is strongly t-semisimple );
(2) Every weak duo module (SS-module) is strongly t-semisimple;
(3) Every R-module is t-semisimple.

Proof: (1) < (3) by Proposition (3.4)
(3) < (2) It follows by Remarks Examples 2.5(8).
(2) = (1) R is duo (because R is commutative ring with unity), so R is strongly
t-semisimple.

Proposition 3.10. (3.10):
The following statements are equivalent for a commutative ring R:
(1) R is t-semisimple;
(2) Every nonsingualr R-module is strongly t-semisimple;
(3) For every R-module M, there exists a strongly t-semisimple R-module M '
such that M = Zy(M) & M.

Proof: (1) = (2) Let M be a nonsingular R-module. Hence M is t-
semisimple by Proposition (3.4) (1 = 3), also M is injective by (Proposition
(34) ( (1) = (5)). It follows that M is strongly t-semisimple by (Corollary
(2.15))

(2) = (1) By condition (2) every nonsingular module M is strongly t-semisimple,
hence every nonsingular module M is t-semisimple. Thus every nonsingular is
semisimple by (Remark and Examples 2.2(6)). It follows that R is t-semisimple
by (Proposition (3.4) (4) = (1)).

(1) = (3) By (Proposition (3.4) (1) = (6)), M = Zy(M) & M for some in-

jective R-module M ' by But M = % which is nonsingular module. Hence

M’ is t-semisimple by (proposition (3.4) (1) = (4)). Thus M’ is t-semisimple

and injective, so M’ is strongly t-semisimple by Corollary (2.15).

3)= (1) M =2y(M) @ M', where M’ is strongly t-semisimple. Hence M’
M

. L. I . . . ’. .
is t-semisimple. But M = 7300 which is nonsingular, so M is nonsingular

t-semisimple. Thus M 'is semisimple by Remarks and Examples 2.2(6). But
M'is injective. Thus R is t-semisimple by (Proposition (3.4) (6) = (1)).

References
[1] Abas, M.S.(1991). On Fully Stable Modules, Ph.D. Thesis, College of Science, University
of Baghdad.

[2] Asgari, Sh., Haghany, A. (2011).t-Extending modules and t-Baer modules,
Comm.Algebra, 39:1605-1623.

[3] Asgari, Sh., Haghany, A. /Tolooei Y. (2013). T-semisimple modules and T-semisimple
rings comm. Algebra,41:5,1882-1902.



STRONGLY T-SEMISIMPLE MODULES AND... 41

Asgri, Sh., Haghany, A.(2010).Densely co-Hopfian modules. Journal of Algebra and Its
Aplications 9:989-1000.

Chatters, A. W., Khuri, S. M. (1980). Endomorphism rings of modules over nonsingular
CS rings, J. London Math. Soc. 21:434-444 .

Chen, J., Ding, N., Yousif, M. F. (2004). On Noetherian rings with essential socle, J.
Clark, J., Lomp, C., Vanaja N., Wisbauer, R. (2006). Lifting Modules. Frontiers inMath-
ematics, Birkhauser Verlag, Basel.

Dung, N. V., Huynh, D. V., Smith, P. F, Wisbauer, R. (1994). Extending Modules.Pitman

Research Notes in Mathematics 313, Longman, Harlow.

Goodearl K.R., Ring Theory, Non Singular Rings and Modules,(1976) Marcel Dekker,
Inc. New York and Basel.

Kasch F.Modules and Rings (1982), Acad. Press, London.

Mijbass A .S. , ,1997.” Quasi Dedekind Modules ” ,Ph.D .Thesis ,College of Science
University of Baghdad .

Lam, T. Y. (1998). Lectures on Modules and Rings. Graduate Texts in Mathematics,
Vol. 189, Springer-Verlag, New York/Berlin.

Patrick F. Smith,(2015) .Fully Invariant Multiplication Modules. Palestine Journal of
Mathematics, 4: 462470.

Tamadher A. 1.(2015). Modules related to Rickart Modules. Ph.D. Thesis, College of
Science,Al- Mustansiriyah University.

Wisbauer R. (1991).Foundations of Modules and Rings theory, reading: Gordon and
Breach.



42



