IJPAM: Volume 115, No. 4 (2017)

Title

AN UPPER ESTIMATE FOR THE LARGEST SINGULAR
VALUE OF A SPECIAL MATRIX, I

Authors

Svetoslav I. Nenov
Department of Mathematics
University of Chemical Technology and Metallurgy
Sofia 1756, BULGARIA

Abstract

Our goal is to prove an upper bound for the largest singular value of the following matrix

\begin{displaymath}
\boldsymbol A_0 = \boldsymbol D^{-1}\boldsymbol E\left(\bol...
...^t\boldsymbol D^{-1}\boldsymbol E\right)^{-1}\boldsymbol E^t.
\end{displaymath}

Here $\cdot^t$ denotes the matrix transpose, $\boldsymbol D$ is a non-singular matrix, and $\boldsymbol E$ is thin matrix.

History

Received: January 29, 2017
Revised: May 20, 2017
Published: August 10, 2017

AMS Classification, Key Words

AMS Subject Classification: 15A18
Key Words and Phrases: singular value, bounds on the singular values of a matrix, moving least-squares approximation

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, Claudio T. Silva, Point-Set Surfaces,
https://www.math.tau.ac.il/ levin/

2
G. Fasshauer, Multivariate Mesh-free Approximation,
https://www.math.iit.edu/ fass/603_ch7.pdf

3
Faryar Jabbari, Linear System Theory II, Chapter 3: Eigenvalue, singular values, pseudo-inverse, The Henry Samueli School of Engineering, University of California, Irvine (2015),
https://gram.eng.uci.edu/ fjabbari/me270b/me270b.html.

4
D. Levin, The approximation power of moving least-squares,
https://www.math.tau.ac.il/ levin/

5
D. Levin, Mesh-independent surface interpolation,
https://www.math.tau.ac.il/ levin/

6
D. Levin, Stable integration rules with scattered integration points, Journal of Computational and Applied Mathematics, 112 (1999), 181-187,
https://www.math.tau.ac.il/ levin/

7
Svetoslav Nenov, Tsvetelin Tsvetkov, Matrices associated with moving least-squares approximation and corresponding inequalities, Advances in Pure Mathematics, 5 (2015), 856-864, doi: https://doi.org/10.4236/apm.2015.514080.

8
Kaare Brandt Petersen, Michael Syskind Pedersen, The Matrix Cookbook, Version: February 16, 2006,
https://www.mit.edu/ wingated/stuff_i_use/matrix_cookbook.pdf

9
Siegfried M. Rump, Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse, BIT, 51, No. 2 (2011).

10
Dicho Stratiev, Ivaylo Marinov, Rosen Dinkov, Ivelina Shishkova, Ilian Velkov, Ilshat Sharafutdinov, Svetoslav Nenov, Tsvetelin Tsvetkov, Sotir Sotirov, Magdalena Mitkova, Nikolay Rudnev, Opportunity to Improve Diesel-Fuel Cetane-Number Prediction from Easily Available Physical Properties and Application of the Least-Squares Method and Artificial Neural Networks, American Chemical Society, 29, No. 3 (2015), doi: https://doi.org/10.1021/ef502638c.

How to Cite?

DOI: 10.12732/ijpam.v115i4.10 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 115
Issue: 4
Pages: 771 - 775


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).