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Abstract: In multivariate analysis, the stability of correlation matrix is a major issue. We

can be seen it in the literature, the most popular tests and widely used are Jennrich test and

Box M test which introduced by Jennrich in 1970 and Box in 1949. Jennrich test involve

inverse of matrix and Box involve the determinant of the matrix. Under these conditions

the computation of the tests are quite cumbersome when the data in high dimension. This

encourage us to propose a new statistical test. Which is constructed based on upper-off-

diagonal elements to overcome the difficulty.
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1. Introduction

The problem of testing the stability or homogeneity of the correlation matrix
is a serious problem. It has been implemented by several researchers e.g. [4],
[9], [17], [12], [11], [18], [5].

To test the stability of correlation or covariance matrix the most and widely
tests used are [2] and [8] as a example see [4], [12], [11], [18], [6], [5]. These
tests apply to several of independent samples of correlation matrices, which are
drawn from a p- variate normal distribution. These tests constructed based on
likelihood ratio test (LRT) where their distributions under H0 were derived for
asymptotic case. Moreover, those tests are to test the stability of the correlation
matrix in simultaneous way.
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However, usually the number of variables are large. This condition can make
the computation of those tests tedious since those tests involves determinant
and inverse of the matrix that makes the computation efficiency becomes low
[7].

We constructed our test based on vec operator and commutation matrix.
This statistical test is based on the linear transformation that change the matrix
to vector where it is elements are the upper-off-diagonal only to ensure the non-
singularity of the matrix.

2. Asymptotic Derivation

To construct the statistical test we use the asymptotic distribution of the cor-
relation matrix developed in [3] and [14]. Let X1, X2, ... Xn a random sample
of size n drawn from p- variate normal distribution with positive definite co-
variance matrix Σ,

S =
1

n− 1

n
∑

i=1

(Xi − X̄)(Xi − X̄)
t

is the sample covariance matrix, where X̄ = 1
n

∑n
i=1(Xi).

The sample correlation matrix R = S
−1/2
d SS

−1/2
d and the population corre-

lation matrix is Ω= Σ
−1/2
d ΣΣ

−1/2
d where Sd and Σd is the diagonal elements of

S and Σ respectively. Thus the correlation matrix R and Ω are
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Then

ρij =
σij√

σii
√
σjj

and rij =
sij√

sii
√
sjj

.

3. Asymptotic Distribution of vec(R)

The asymptotic sample correlation matrix R will be examined from p=2 to
p>2. For that purpose we use the results presented in [1], see p. 132, Theorem
4.2.3.

Theorem 1. Let U(n) be a sequence of p-component random vectors and

b a fixed vector such that
√
n[U(n) − b]

d→ N(0, γ) as n → ∞. Let f(u) be a

vector valued function of u such that each component fj(u) satisfies
∂fj(u)
∂ui u=b

6=
0. If

∂fj(u)
∂ui u=b

is the (i, j)th component of ω.Then
√
n[f(U(n)) − f(b)]

d→
N(0, ωt γ ω).

For p=2 the correlation matrix

(

1 r12
r21 1

)

this matrix is transforms into

vector which is element is r12 the upper-off-diagonal of the matrix. This trans-
formation is developed in [16] and we developed it here. However, before we
start we need to identify the distribution of correlation sample R. By using
the vec operator and the commutation matrix, it is formulated in the following
proposition.
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Proposition 1. Let X1,X2, ,Xn be a random vector drawn from p-varite

normal distribution of size n then
√
n− 1(vec(R) − vec(Ω))

d→ N(0, Γ ). Here:
i. Γ = 2NpφNp.
ii. Np =

1
2 (Ip2 +Kpp).

iii. φ = (Ip2 − (Ip ⊗ Ω)Λp)(Ω⊗ Ω)(Ip2 − Λp(Ip ⊗ Ω)).
iv. Kpp = Σp

i=1Σ
p
i=1(Gij ⊗Gt

ij) is the commutation matrix of size (p2× p2).
v. Λp = Σp

i=1hih
t
i ⊗ hih

t
i where, hi is the i-th column of Ip.

According to Central Limit Theorem, we have the following proposition of
covariance matrix of vec(S).

Proposition 2. If n → ∞, according to central limit Theorem, the asymp-

totic distribution of S is equal to
√
n− 1(vec(S) − vec(Σ))

d→ N(0, var(S)) .
Where the covariance of vec(S) = (Ip2 +Kpp)(Σ ⊗ Σ).

4. Asymptotic Distribution of v(RU)

The correlation matrix is a symmetric matrix, it has redundant elements [15].
To eliminate those elements, we consider the upper off diagonal elements in the
matrix only. We denote it v(RU ). For that we present linear transformation
matrix T to eliminate the non-random elements in R.

T a
i,j =

{

1, (i, j) = ((Ca
2 )− a+ b+ 1, b) for b = 1, 2, ..., a − 1,

0, otherwise.

The transformation T presented in matrix form as a block matrix T =
(T1|T2|...|Tp) of size (k × p2) partitioned into p blocks where k = p(p−1)

2 ; Ta =
(tai,j), each of size (k × p), where T1 is zero matrix, where a = 2, 3, , p. Where
Ca
2 is the number of combinations of 2 out of a objects.
We use this asymptotic distribution of R to drive the asymptotic distribu-

tion of our test.
Proposition 3. Let X1,X2, ...,Xn is a random sample of size n from . If

Ω is correlation matrix then,
√
n− 1(||v(RU )||2 − ||v(ΩU )||2) d→ N(0, σ2),

σ2 = 4(v(ΩU ))
t ∗T ∗Γ ∗T t ∗ v(ΩU ) = 8 ∗ (v(ΩU ))

t ∗T ∗Np ∗φ ∗Np ∗T t ∗ v(ΩU ).

Proof. The right side (v(ΩU ))
t ∗ T ∗ Np ∗ φ ∗ Np ∗ T t ∗ v(ΩU ), where

Γ = 2NpφNp, Np =
1
2 (Ip2+Kpp) andKpp = Σp

i=1Σ
p
i=1(Gij⊗Gt

ij) is the commu-

tation matrix of size (p2×p2). φ = (Ip2 − (Ip ⊗Ω)Λp)(Ω⊗Ω)(Ip2 − Λp(Ip ⊗Ω)),
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Λp = Σp
i=1hih

t
i ⊗ hih

t
i where, hi is the i-th column of Ip.

(v(ΩU ))
t ∗ T ∗ Np ∗ φ ∗ Np ∗ T t ∗ v(ΩU ) = (v(ΩU ))

t ∗ T ∗ 1
2(Ip2 + Kpp) ∗

(Ip2 − (Ip ⊗ Ω)Λp)(Ω⊗ Ω)(Ip2 − Λp(Ip ⊗ Ω)) ∗ 1
2(Ip2 +Kpp) ∗ T t ∗ v(ΩU )

= 1
4 ∗ [(v(ΩU ))

t ∗ T ∗ I2p + (v(ΩU ))
t ∗ T ∗Kpp][(Ip2 − (Ip ⊗ Ω)Λp)(Ω ⊗ Ω)

(Ip2 − Λp(Ip ⊗ Ω))] ∗ [I2p ∗ T t ∗ v(ΩU ) +Kpp ∗ T t ∗ v(ΩU )].

Since T ∗ I2p = T , Kppvec(Ω) = vec(Ω) and (vec(Ω))t ∗Kpp = (vec(Ω))t.

Then

= 1
4 ∗ [(v(ΩU ))

t ∗ T + (v(ΩU ))
t ∗ T ∗Kpp][(Ip2 − (Ip ⊗ Ω)Λp)](Ω ⊗ Ω)

[(Ip2 − Λp ∗ (Ip ⊗ Ω))][I2p ∗ T t ∗ v(ΩU ) +Kpp ∗ T t ∗ v(ΩU )].

Corollary 1. Let λ a matrix of size p×p such that vec(λ) = T t∗T ∗vec(Ω).
Then by using the corollary 1 we have the following
= 1

4∗[(v(λ))t+(v(λt))t]∗[(Ip2 − (Ip ⊗ Ω)Λp)(Ω⊗Ω)(Ip2 − Λp(Ip ⊗ Ω))]∗[(v(λ))+
(v(λt))]

= 1
4 ∗ [(v(λ))t ∗ Ip2 + (v(λt))t ∗ Ip2 − (v(λ))t ∗ (Ip ⊗Ω)Λp − (v(λt)t)(Ip ⊗Ω)Λp] ∗

(Ω⊗ Ω)[(Ip2v(λ) + Ip2v(λ
t)− Λp(Ip ∗ ⊗Ω)v(λ)− Λp(Ip ⊗ Ω)v(λt)]

= 1
4 ∗ [(v(λ))t + (v(λt))t − (v(λ))t ∗ (Ip ⊗ Ω)Λp − (v(λt)t)(Ip ⊗ Ω)Λp] ∗ (Ω ⊗

Ω)[v(λ) + v(λt)− Λp(Ip ∗ ⊗Ω)v(λ)− Λp(Ip ⊗ Ω)v(λt)]

We define DW as a matrix the diagonal elements are the diagonal elements
of W .

Now

v(λ)t ∗ (Ip ⊗ Ω)Λp = v(DΩλ), v(λ
t)t ∗ (Ip ⊗ Ω)Λp = v(DλΩ)

Λp ∗ (Ip ⊗ Ω) ∗ v(λ) = v(DΩλ), Λp ∗ (Ip ⊗ Ω) ∗ v(λt) = v(DλΩ)
Kmn ∗ v(A) = v(At) Theorem 7.30 (Schott, 1997).

Thus,(v(λ))t ∗Kpp = (v(λt))t

= 1
4 [v(λ

t)(Ω⊗Ω)+(v(λt)t)(Ω⊗Ω)− v(DΩλ)
t(Ω⊗Ω)− v(DλΩ)

t(Ω⊗Ω)][v(λ)+
v(λt)− v(DΩλ)− v(DλΩ)]

= 1
4 [v(λ

t)(Ω⊗Ω)v(λ)+(v(λt)t)(Ω⊗Ω)v(λ)−v(DΩλ)
t(Ω⊗Ω)v(λ)−v(DλΩ)

t(Ω⊗
Ω)v(λ) + v(λt)(Ω ⊗ Ω)v(λt) + (v(λt)t)(Ω ⊗ Ω)v(λt) − v(DΩλ)

t(Ω ⊗ Ω)v(λt) −
v(DλΩ)

t(Ω⊗Ω)v(λt)−v(λt)(Ω⊗Ω)v(DΩλ)−(v(λt)t)(Ω⊗Ω)v(DΩλ)+v(DΩλ)
t(Ω⊗

Ω)v(DΩλ)+v(DλΩ)
t(Ω⊗Ω)v(DΩλ)−v(λ)t(Ω⊗Ω)v(DλΩ)−v(λt)t(Ω⊗Ω)v(DλΩ)+
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v(DΩλ)
t(Ω⊗ Ω)v(DλΩ) + v(DλΩ)

t(Ω⊗ Ω)v(DλΩ)]

Note
v(λ)t(Ω⊗Ω)v(λ) = v(λt)t(Ω⊗Ω)v(λt), v(λt)t(Ω⊗Ω)v(λ) = v(λ)t(Ω⊗Ω)v(λt)
v(DΩλ)(Ω⊗Ω)v(λ) = v(DΩλ)

t(Ω⊗Ω)v(λ)t = v(λ)t(Ω⊗Ω)v(DΩλ) = v(λt)(Ω⊗
Ω)v(DΩλ), v(DλΩ)

t(Ω ⊗Ω)v(DΩλ) = v(DΩλ)
t(Ω⊗ Ω)v(DλΩ)

Now by using Theorem 7.15, 7.16 and 7.17 from [15] and Proposition 1.3.14.
from [10] we have the following

= 1
4∗[2∗trace(λtΩλΩ)+2∗trace((λΩ)2)−4∗trace(λtΩDλΩΩ)−4∗trace(λΩDΩλΩ)+

2 ∗ tarce(DΩλΩDλΩΩ) + trace((DΩλΩ)
2) + trace((DλΩΩ)

2)]

σ2 = 8 ∗ 1
4 ∗ [2 ∗ trace(λtΩλΩ) + 2 ∗ trace((λΩ)2) − 4 ∗ trace(λtΩDλΩΩ) − 4 ∗

trace(λΩDΩλΩ) + 2 ∗ tarce(DΩλΩDλΩΩ) + trace((DΩλΩ)
2) + trace((DλΩΩ)

2)]

σ2 = 2 ∗ [2 ∗ trace(λtΩλΩ) + 2 ∗ trace((λΩ)2) − 4 ∗ trace(λtΩDλΩΩ) − 4 ∗
trace(λΩDΩλΩ) + 2 ∗ tarce(DΩλΩDλΩΩ) + trace((DΩλΩ)

2) + trace((DλΩΩ)
2)]

5. Proposed Test

As we mentioned above the limitations of those tests which involves the deter-
minant of the sample matrix, i.e., generalized variance (GV) as a measure of
multivariate dispersion measurement. Due to the application of this measure
these test are quite cumbersome when the data in high dimension. Our pro-
posed test used vector variance as a measure of multivariate dispersion, which
is equal to a sum square of the elements of the sample correlation.

According to [13] by using multivariate statistical process control (MSPC),
the hypothesis testing for the stability of correlation structure H0 : Ω1 = Ω2 =
... = Ωm versus H1 : Ωi 6= Ωj for at least one pair (i, j) is equivalently to
repeated the test H0 : Ωi = Ω0 versus H1 : Ωi 6=0 where i = 1, 2, ,m. Where Ω0

is reference sample. The proposed statistical test is

Z∗
i =

||v(RiU )||2 − E(||v(RU )||2)
√

(
1

n− 1
)σ2

=
||v(RiU )||2 − (||v(ΩU )||2)

√

(
1

n − 1
)σ2

.

The null hypothesis H0 is rejected at the significance level α when |Zi > zα
2

with (1−α/2)th quantile of standard normal distribution. However, in the case
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of Ω unknown, it must be estimated from independent random sample Ω̂ where
Ω̂ = R̄ the average of correlation matrices of R1, R2, , Rm.

6. Conclusion

In this paper, the asymptotic distribution of correlation matrices was derived.
The distribution can be approximated by standard normal distribution. By
using the upper-off-diagonal elements of the matrix to handle the case when p
is large.
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