IJPAM: Volume 116, No. 2 (2017)
Title
WHEN THE MAPPING CARRYING SUBMODULES TOTHEIR RADICALS IS A LATTICE HOMOMORPHISM
Authors
Javad Bagheri Harehdashti, Hosein Fazaeli MoghimiDepartment of Mathematics
University of Birjand
Birjand, IRAN
Abstract
Let be a commutative ring and be a unital -module. In this paper, we investigate when the mapping , from the lattice of submodules of to the lattice of radical submodules of defined by is a lattice homomorphism. We show that if is an -module which satisfies the radical formula, then is a lattice homomorphism if and only if for all finitely generated submodules and of .History
Received: 2017-01-28
Revised: 2017-06-01
Published: October 7, 2017
AMS Classification, Key Words
AMS Subject Classification: 13C13, 06B99, 13C99
Key Words and Phrases: radical of submodule, multiplication module, -module
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- Z.A. El-Bast and F.P. Smith , Multiplication modules, Comm. Algebra, 16, No. 4 (1988), 755-799, doi: https://doi.org/10.1080/00927878808823601.
- 2
- C.P. Lu, M-Radical of submodules in modules, Math. Japonoca, 34, No. 2 (1989), 211-219.
- 3
- R.L. McCasland and M.E. Moore, On radicals of submodules, Comm. Algebra, 19 (1991), 1327-1341, doi: https://doi.org/10.1080/00927879108824205.
- 4
- R.L. McCasland and M.E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29, No. 1 (1986), 37-39, doi: https://doi.org/10.4153/CMB-1986-006-7.
- 5
- R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817, doi: https://doi.org/10.1080/00927879208824432.
- 6
- H.F. Moghimi and J.B. Harehdashti, Mappings between lattices of radical submodules, Int. Electron. J. Algebra, 19 (2016), 35-48, doi: https://doi.org/10.26330/ieja.266191.
- 7
- M.E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 30, No. 10 (2002), 5037-5064, doi: https://doi.org/10.1081/AGB-120014684.
- 8
- P.F. Smith , Mappings between module lattices, Int. Electron. J. Algebra, 15 (2014), 173-195, doi: https://doi.org/10.24330/ieja.266246.
- 9
How to Cite?
DOI: 10.12732/ijpam.v116i2.6 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 116
Issue: 2
Pages: 353 - 360
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).