IJPAM: Volume 116, No. 2 (2017)

Title

WHEN THE MAPPING CARRYING SUBMODULES TO
THEIR RADICALS IS A LATTICE HOMOMORPHISM

Authors

Javad Bagheri Harehdashti$^1$, Hosein Fazaeli Moghimi$^2$
$^{1,2}$Department of Mathematics
University of Birjand
Birjand, IRAN

Abstract

Let $R$ be a commutative ring and $M$ be a unital $R$-module. In this paper, we investigate when the mapping $\eta_M:\mathcal{L}(M)\rightarrow \lrm$, from the lattice of submodules of $M$ to the lattice of radical submodules of $M$ defined by $\eta_M(N)=\rad N$ is a lattice homomorphism. We show that if $M$ is an $R$-module which satisfies the radical formula, then $\eta_M$ is a lattice homomorphism if and only if $\rad(L\cap N)=\rad L \cap \rad N,$ for all finitely generated submodules $L$ and $N$ of $M$.

History

Received: 2017-01-28
Revised: 2017-06-01
Published: October 7, 2017

AMS Classification, Key Words

AMS Subject Classification: 13C13, 06B99, 13C99
Key Words and Phrases: radical of submodule, multiplication module, $\eta$-module

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
Z.A. El-Bast and F.P. Smith , Multiplication modules, Comm. Algebra, 16, No. 4 (1988), 755-799, doi: https://doi.org/10.1080/00927878808823601.

2
C.P. Lu, M-Radical of submodules in modules, Math. Japonoca, 34, No. 2 (1989), 211-219.

3
R.L. McCasland and M.E. Moore, On radicals of submodules, Comm. Algebra, 19 (1991), 1327-1341, doi: https://doi.org/10.1080/00927879108824205.

4
R.L. McCasland and M.E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29, No. 1 (1986), 37-39, doi: https://doi.org/10.4153/CMB-1986-006-7.

5
R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817, doi: https://doi.org/10.1080/00927879208824432.

6
H.F. Moghimi and J.B. Harehdashti, Mappings between lattices of radical submodules, Int. Electron. J. Algebra, 19 (2016), 35-48, doi: https://doi.org/10.26330/ieja.266191.

7
M.E. Moore and S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 30, No. 10 (2002), 5037-5064, doi: https://doi.org/10.1081/AGB-120014684.

8
P.F. Smith , Mappings between module lattices, Int. Electron. J. Algebra, 15 (2014), 173-195, doi: https://doi.org/10.24330/ieja.266246.

9

How to Cite?

DOI: 10.12732/ijpam.v116i2.6 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 116
Issue: 2
Pages: 353 - 360


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).