IJPAM: Volume 117, No. 3 (2017)

Title

ON SUB WEAKLY $\omega$-CONTINUOUS FUNCTIONS

Authors

E. Rosas$^1$, N. Rajesh$2$, C. Carpintero$^3$
$^{1,3}$Departamento de Matemática
Universidad de Oriente
Cumaná, Venezuela
$^1$Departamento de Ciencias Naturales y Exactas
Universidad de la Costa
Barranquilla, COLOMBIA
$^2$Department of Mathematics
Rajah Serfoji Govt. College
Thanjavur, 613005, Tamilnadu, INDIA
$^3$Universidad Autónoma del Caribe
Barranquilla, COLOMBIA

Abstract

The purpose of this paper is to introduce a new class functions called, sub weakly $\omega$-continuous functions. Also, we obtain its characterizations and its basic properties.

History

Received: 2017-10-12
Revised: 2017-12-27
Published: January 16, 2018

AMS Classification, Key Words

AMS Subject Classification: 54C10, 54C08, 54C05
Key Words and Phrases: topological spaces, $\omega$-open set, $\omega$-closed set, sub weakly $\omega$-continuous functions

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. Al-Omari and M. S. M. Noorani, Contra-$\omega$-continuous and almost $\omega$-continuous functions, Int. J. Math. Math. Sci., 9 (2007), 169-179, doi: https://doi.org/10.1155/2007/40469.

2
K. Al-Zoubi and B. Al-Nashef, The topology of $\omega$-open subsets, Al-Manarah, 9 (2003), 169-179.

3
C. Carpintero, N. Rajesh, E. Rosas and S. Saranyasry, Properties of almost $\omega$-continuous functions, Journal of Advanced Studies in Topology, 4, No. 3 (2013), 29-38, doi: https://doi.org/10.20454/jast.2013.621.

4
E. Ekici, S. Jafari and S.P. Moshokoa, On a weak form of $\omega$-continuity, Annals Univ. Craiova, Math. Comp. Sci., 37, No. 2 (2010), 38-46.

5
H.Z. Hdeib, $\omega$-closed mappings, Revista Colombiana Mat., 16 (1982), 65-78.

6
T.M. Nour, Almost $\omega$-contiunuous functions, European J. Sci. Res., 8, No. 1 (2005), 43-47.

7
N. Rajesh and P. Sudha, On weakly-$\omega$-continuous functions, International Journal of Pure and Applied Mathematics, 86, No. 2 (2013), 325-332, doi: https://doi.org/10.12732/ijpam.v86i2.1.

8
N.V. Velicko, $H$-closed topological spaces, Trans. Amer. Math. Soc., 78, No. 2 (1968), 103-118.

How to Cite?

DOI: 10.12732/ijpam.v117i3.15 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 3
Pages: 539 - 545


$\omega$-CONTINUOUS FUNCTIONS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).