IJPAM: Volume 117, No. 3 (2017)

Title

EDELSTEIN'S THEOREM FOR NON-SELF
MULTIVALUED CONTRACTIVE MAPPINGS

Authors

V. Sankar Raj$^1$, S. Jamal Fathima$^2$
$^{1,2}$Department of Mathematics
Manonmaniam Sundaranar University
Tirunelveli 627 012, Tamilnadu, INDIA

Abstract

Let us consider two nonempty subsets $A$ and $B$ of a metric space $X$ and an upper semicontinuous multivalued non-self mapping $T:A\rightarrow
2^B$, where $2^B$ denotes the set of all nonempty subsets of $B$. It is worth mentioning that the notion of iterated sequence is meaningless since the mapping $T$ is a non-self mapping. In this article, we introduce a new type of Picard's iteration-like sequence for a non-self multivalued mapping and provided sufficient conditions for the existence of a point $x$ in $A$ for which the distance between the point $x$ and the set $T(x)$ is optimum. Using this notion, we obtain a generalized Edelstein's theorem for non-self multivalued contractive mappings.

History

Received: 2017-01-28
Revised: 2017-08-09
Published: January 11, 2018

AMS Classification, Key Words

AMS Subject Classification: 47H10, 47J25, 54H25
Key Words and Phrases: multivalued contractive, $P-$property, upper semicontinuous, best proximity point, fixed point, Picard's iteration-like sequence, diminishing sequence

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M. A. Al-Thagafi, N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Analysis, 70, No. 3 (2009), 1209-1216, doi: https://doi.org/10.1016/j.na.2008.02.004.

2
A. Amini-Harandi, Best proximity points for proximal generalized contractions in metric spaces, Optim. Lett., 7, No. 5 (2013), 913-921, doi: https://doi.org/10.1007/s11590-012-0470-z.

3
N. Bilgili, E. Karapinar, K. Sadarangani, A generalization for the best proximity point of Geraghty-contractions, J. Inequal. Appl., (2013), 9, doi: https://doi.org/10.1186/1029-242X-2013-286.

4
M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc., 12, (1961), 7-10, doi: https://doi.org/10.1090/S0002-9939-1961-0120625-6.

5
A.A. Eldred, P. Veeramani, On best proximity pair solutions with applications to differential equations, The Indian Math. Soc., Special Centenary Volume(1907-2007) (2008), 51-62.

6
M. Gabeleh, Best proximity point theorems for single- and set-valued non-self mappings, Acta Math. Sci. Ser. B Engl. Ed., 34, No. 5 (2014), 1661-1669, doi: https://doi.org/10.1016/S0252-9602(14)60112-0.

7
M. Gabeleh, Best proximity point theorems via proximal non-self mappings, J. Optim. Theory Appl., 164, No. 2 (2015), 565-576, doi: https://doi.org/10.1007/s10957-014-0585-8.

8
M. Gabeleh, Best proximity points: global minimization of multivalued non-self mappings, Optim. Lett., 8, No. 3 (2014), 1101-1112, doi: https://doi.org/10.1007/s11590-013-0628-3.

9
N. Hussain, A. Latif, P. Salimi, Best proximity point results for modified Suzuki $\varphi$-$\psi$-proximal contractions, Fixed Point Theory and Applications, 2014 2014:10, (2014), 16, doi: https://doi.org/10.1186/1687-1812-2014-10.

10
W.K. Kim, K.H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl., 316, No. 2 (2006), 433-446, doi: https://doi.org/10.1016/j.jmaa.2005.04.053.

11
W.K. Kim, Sangho Kum, K.H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Analysis, 68, No. 8 (2008), 2216-2227, doi: https://doi.org/10.1016/j. na.2007.01.057.

12
W. A. Kirk, S. Reich, P.Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim., 24, No. 7-8 (2003), 851-862, doi: https://doi.org/10.1081/NFA-120026380.

13
S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30, (1969), 475-488, http://projecteuclid.org/euclid.pjm/1102978504.

14
B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226, (1977), 257-290, doi: https://doi.org/10.1090/S0002-9947-1977-0433430-4.

15
S. Sadiq Basha, P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory, 103, No. 1 (2000), 119-129, doi: https://doi.org/10.1006/jath.1999.3415.

16
V. Sankar Raj, A best proximity point theorem for weakly contractive non-self mappings, Nonlinear Analysis, 74, (2011), 4804-4808, doi: https://doi.org/10.1016/j.na.2011.04.052.

17
V. Sankar Raj, A.A. Eldred, A characterization of strictly convex spaces and applications, J. Optim. Theory Appl., 160, No. 2 (2014), 703-710, doi: https://doi.org/10.1007/s10957-013-0357-x.

18
N. Shahzad, S. Sadiq Basha, R. Jeyaraj, Common best proximity points: global optimal solutions, J. Optim. Theory Appl., 148, No. 1 (2011), 69-78, doi: https://doi.org/s10957-010-9745-7.

19
R. E. Smithson, Fixed points for contractive multifunctions, Proc. Amer. Math. Soc., 27, (1971), 192-194, doi: https://doi.org/10.1090/S0002-9939-1971-0267564-4.

20
P. S. Srinivasan, P. Veeramani, On existence of equilibrium pair for constrained generalized games, Fixed Point Theory Appl., No. 1 (2004) , 21-29, doi: https://doi.org/10.1155/S1687182004308132.

21
C. Vetro, P. Salimi, Best proximity point results in non-Archimedean fuzzy metric spaces, Fuzzy Inf. Eng., 5, No. 4 (2013), 417-429, doi: https://doi.org/10.1007/s12543-013-0155.

How to Cite?

DOI: 10.12732/ijpam.v117i3.2 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 117
Issue: 3
Pages: 375 - 382


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).