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1. Introduction

Definition 1.1. An arithmetic function is a function that is defined for
all positive integers.

Definition 1.2. An arithmetic function f is called multiplicative if and
only if f(mn) = f(m)f(n) where m and n are relatively prime positive integers.

Definition 1.3. Euler’s phi function denoted by φ is defined by setting
φ(n) equal to the number of the integer less than or equal to n that are relatively
prime to n.
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Theorem 1.4. The following statements are true

1. φ is a multiplicative function.

2. Let n = pa11 pa22 · · · p
ak
k is the prime power factorization into distinct primes

of the positive integer n. Then

φ(n) = n

k
∏

i=1

(1−
1

pi
.)

Definition 1.5. Tau function or the number of divisors function, denoted
by τ is defined by setting τ(n) equal to the number of positive divisors of n.

Theorem 1.6. The following statements are true

1. τ is a multiplicative function.

2. Let n = pa11 pa22 · · · p
ak
k

is the prime power factorization into distinct primes

of the positive integer n. Then

τ(n) =

k
∏

i=1

(ai + 1).

Definition 1.7. Sigma function or the sum of divisors function, denoted
by σ is defined by setting σ(n) equal to the sum of all the positive divisors of
n.

Theorem 1.8. The following statements are true

1. σ is a multiplicative function.

2. Let n = pa11 pa22 · · · p
ak
k is the prime power factorization into distinct primes

of the positive integer n. Then

σ(n) =

k
∏

i=1

pai+1
i − 1

pi − 1
.

Definition 1.1, 1.2, 1.3, 1.5, 1.7 and theorem 1.4, 1.6, 1.8 are taken from [1],
[2].
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2. Main Results

Lemma 2.1. Let a is a non negative integer and p is a positive prime

number. If n = pa, then

∑

1≤k≤n,(k,n)=1

k =
n · φ(n)

2
.

Proof. Let A be the sum of positive integers less than or equal to pa and B

be the sum of positive integers r less than or equal to pa and (r, pa) 6= 1.
So

∑

1≤k≤n,(k,n)=1

k = A−B =
pa(pa + 1)

2
−

p(pa−1)(pa−1 + 1)

2

=
pa

2
(pa + 1 + pa−1 − 1)

=
pa

2
(pa − pa−1)

=
n · φ(n)

2
.

Theorem 2.2. If k and n are positive integers, then

∑

1≤k≤n,(k,n)=1

k =
n · φ(n)

2
.

Proof. Case I, if n is a prime. Then

∑

1≤k≤n,(k,n)=1

k = 1 + 2 + 3 + · · ·+ (n− 1) =
n(n− 1)

2
=

n · φ(n)

2
.

Case II, if n is not a prime and n = pa11 pa22 · · · pamm such that p1, p2, · · · , pm are
distinct primes and a1, a2, · · · , am are positive integers, then

∑

1≤k≤n,(k,n)=1

k =2m−1
(

∑

1≤k1≤p
a1

1
,(k1,p

a1

1
)=1

k1
)(

∑

1≤k2≤p
a2

2
,(k2,p

a2

2
)=1

k2
)

· · ·
(

∑

1≤km≤p
am
m ,(km,p

am
m )=1

km
)

=2m−1
(pa11
2

(pa11 − pa1−1
1 )

)(pa22
2

(pa22 − pa2−1
2 )

)
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· · ·
(pamm

2
(pamm − pam−1

m )
)

=
2m−1

2m
(pa11 pa22 · · · pamm )(pa11 − pa1−1

1 )(pa22 − pa2−1
2 )

· · · (pamm − pam−1
m )

=
1

2
(n)φ(n).

Theorem 2.3. Let a and n are positive integers. If n = 2a and 2a+1 − 1
is a prime number, then

σ(σ(n)) = 2n = 2τ(n).

Proof. Since

σ(n) = σ(2a) = 2a+1 − 1,

hence

σ(σ(n)) = σ(2a+1 − 1) = 2a+1 = 2n

and

τ(n) = τ(2a) = a+ 1.

Therefore

σ(σ(n)) = 2n = 2 · 2a = 2a+1 = 2τ(n).

Theorem 2.4. If p is a prime number, then

σ(p) = φ(p) + τ(p).

p φ(p) τ(p) σ(p) φ(p) + τ(p)

2 1 2 3 3

3 2 2 4 4

5 4 2 6 6

7 6 2 8 8

11 10 2 12 12

Table 1: some p of σ(p) = φ(p) + τ(p).
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Proof. Let p is a prime number. Then

σ(p) = p+ 1, φ(p) = p− 1 and τ(p) = 2,

hence
φ(p) + τ(p) = p− 1 + 2 = p+ 1 = σ(p).

Therefore
σ(p) = φ(p) + τ(p) where p is a prime number.

Theorem 2.5. If n = 2p and p is an odd prime number, then

σ(n) = n+ φ(n) + τ(n).

p n = 2p φ(n) τ(n) σ(n) n+ φ(n) + τ(n)

3 6 2 4 12 12

5 10 4 4 18 18

7 14 6 4 24 24

11 22 10 4 36 36

13 26 12 4 42 42

Table 2: some n of σ(n) = n+ φ(n) + τ(n).

Proof. Let n = 2p and p is an odd prime number. Then

σ(n) = σ(2p) = σ(2)σ(p) = 3(p + 1) = 3p+ 3,

φ(n) = φ(2p) = φ(2)φ(p) = p− 1

and
τ(n) = τ(2p) = τ(2)τ(p) = 2(2) = 4,

hence
n+ φ(n) + τ(n) = 3p+ 3.

Therefore
σ(n) = n+ φ(n) + τ(n)

where n = 2p and p is an odd prime number.
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Theorem 2.6. If n = 3p and p is a prime number not equal to 3, then

σ(n) = 2(φ(n) + τ(n)).

p n = 3p φ(n) τ(n) σ(n) 2(φ(n) + τ(n))

2 6 2 4 12 12

5 15 8 4 24 24

7 21 12 4 32 32

11 33 20 4 48 48

13 39 24 4 56 56

Table 3: some n of σ(n) = 2(φ(n) + τ(n)).

Proof. Let n = 3p and p is a prime number not equal to 3. Then

σ(n) = σ(3p) = σ(3)σ(p) = 4(p + 1) = 4p+ 4,

φ(n) = φ(3p) = φ(3)φ(p) = 2p − 2

and
τ(n) = τ(3p) = τ(3)τ(p) = 2(2) = 4,

hence
2(φ(n) + τ(n)) = 2(2p − 2 + 4) = 4p+ 4.

Therefore
σ(n) = 2(φ(n) + τ(n))

where n = 3p and p is a prime number not equal to 3.

Theorem 2.7. If n = 2k and k is a non negative integer, then

σ(n) = 2n− 1.

Proof. Let n = 2k and k is a non negative integer. Then

σ(n) = σ(2k) =
2k+1 − 1

2− 1
= 2n− 1.

Therefore
σ(n) = 2n− 1.
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k n = 2k σ(n) 2n − 1

0 1 1 1

1 2 3 3

2 4 7 7

3 8 15 15

4 16 31 31

Table 4: some n of σ(n) = 2n− 1.

Theorem 2.8. If n = 1 or n = p is a prime number, then

σ(n) + φ(n) = 2n.

n 2n φ(n) σ(n) φ(n) + σ

1 2 1 1 2

2 4 1 3 4

3 6 2 4 6

5 10 4 6 10

7 14 6 8 14

Table 5: some n of σ(n) + φ(n) = 2n.

Proof. Where n = 1 is obvious. If n = p is a prime number, then

σ(n) = σ(p) = p+ 1

and
φ(n) = φ(p) = p− 1.

Therefore
σ(n) + φ(n) = 2p = 2n

where n = 1 or n = p is a prime number.

Theorem 2.9. If p is a prime number, then

φ(p) = p− (τ(p))2 + 3.
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p τ(p) (τ(p))2 φ(p) p− (τ(p))2 + 3

2 2 4 1 1

3 2 4 2 2

5 2 4 4 4

7 2 4 6 6

11 2 4 10 10

Table 6: some p of φ(p) = p− (τ(p))2 + 3.

Proof. Let p is a prime number. Then

φ(p) = p− 1 and τ(p) = 2,

hence
p− (τ(p))2 + 3 = p− 22 + 3 = p− 1.

Therefore

φ(p) = p− (τ(p))2 + 3 where p is a prime number.

Theorem 2.10. If n = 2p and p is an odd prime number, then

φ(n) =
n

2
− 1.

p n = 2p φ(n) n
2 − 1

3 6 2 2

5 10 4 4

7 14 6 6

11 22 10 10

13 26 12 12

Table 7: some n of φ(n) = n
2 − 1.

Proof. Let n = 2p and p is an odd prime number. Then

φ(n) = φ(2p) = p− 1 =
2p

2
− 1 =

n

2
− 1.
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Therefore
φ(n) =

n

2
− 1

where n = 2p and p is an odd prime number.

Theorem 2.11. If n = 4p and p is an odd prime number, then

φ(n) =
n

2
− 2.

p n = 4p φ(n) n
2 − 2

3 12 4 4

5 20 8 8

7 28 12 12

11 44 20 20

13 52 24 24

Table 8: some n of φ(n) = n
2 − 2.

Proof. Let n = 4p and p is an odd prime number. Then

φ(n) = φ(4p) = 2(p − 1) = 2p− 2 =
4p

2
− 2 =

n

2
− 2.

Therefore
φ(n) =

n

2
− 2

where n = 4p and p is an odd prime number.
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