IJPAM: Volume 119, No. 4 (2018)
Title
MATHEMATICAL DESCRIPTION OF THE EQUILIBRIUMSTATE OF SYMMETRIC PARTICLE SYSTEMS
Authors
Halyna M. HubalComputer Science and Information Technologies Faculty
Lutsk National Technical University
75 Lvivs'ka str., Lutsk, 43018, UKRAINE
Abstract
One-dimensional symmetric system of particles (hard spheres) is considered in this paper. In equilibrium state of this system, the limit distribution of the configuration Gibbs distribution in the Boltzmann-Grad limit (, is fixed) is uniform (the speed distribution is the Maxwell one and is unchanged).History
Received: February 22, 2018
Revised: Jule 30, 2018
Published: August 10, 2018
AMS Classification, Key Words
AMS Subject Classification: 35Q82
Key Words and Phrases: BBGKY hierarchy of equations, Maxwell speed distribution, symmetric particle system, equilibrium state
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- N. N. Bogolyubov, Problems of a dynamical theory instatistical physics, Gosudarstv. Izdat. Tehn.Teor. Lit., Russian Federation(1946) [in Russian].
- 2
- C. Cercignani, V. I. Gerasimenko, D. Ya. Petrina, -particle dynamics and kinetic equations, Kluwer Acad. Publ.,Netherlands (1997), doi: http://dx.doi.org/10.1007/978-94-011-5558-8.
- 3
- G. N. Gubal', On the existence ofweak local in time solutions in the form of a cumulant expansionfor a chain of Bogolyubov's equations of a one-dimensionalsymmetric particle system, Journal of Mathematical Sciences,199 (2014), 654-666, doi: http://dx.doi.org/10.1007/s10958-014-1892-1.
- 4
- M. A. Stashenko, G. N. Gubal', Existence theorems for the initial value problem for the Bogolyubov chain of equations in the space of sequences of bounded functions, Siberian Mathematical Journal, 47, No. 1 (2006), 152-168, doi: http://doi.org/10.1007/s11202-006-0015-8.
How to Cite?
DOI: 10.12732/ijpam.v119i4.13 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 119
Issue: 4
Pages: 717 - 726
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).