# Title

ON NUMERICAL SOLUTION OF MULTI-TERMS
FRACTIONAL DIFFERENTIAL EQUATIONS USING
SHIFTED CHEBYSHEV POLYNOMIALS

# Authors

Ajmal Ali, Norhashidah Hj Mohd. Ali
School of Mathematical Science
University of Science
11800 Penang, MALAYSIA

# Abstract

This work provides numerical solution to multi-term differential equation of fractional order by collocation method using the Chebyshev polynomials based functions. The fractional derivative are used in Caputo's sense. The method assumed an approximate solution of the forms of shifted Chebyshev polynomials based functions. The assumed approximate solution is now substitute into the multi-term differential equations of fractional order. After a careful implementation of fractional order differential, we collect the equation at some suitable points and solve it together with boundary conditions to obtain a system of easily solvable linear or nor linear algebraic equations. Numerical examples of multi-order fractional differential equations (MOFDEs) are present to illustrate the method. The results converge to the exact solutions after some iterations and hence it revealed that proposed method is very effective and simple. Thats exposed the validity and applicability of the method.

# History

Revised: August 21, 2018
Published: August 21, 2018

# AMS Classification, Key Words

AMS Subject Classification: 65N14
Key Words and Phrases: Chebyshev polynomials, Caputo's fractional derivative, Multi Order fractional differential equation

## Bibliography

1
O. P. Agrawal, O. Defterli, D. Baleanu, Fractional optimal control problems with several stateand control variables, Journal of Vibration and Control, , No. 13, (2010), 1967-1976.doi.org/10.1177/1077546309353361

2
A. Ajmal, N. H. M. Ali, On numerical solution of fractional order delay differential equation using Chebyshev collocationmethod, New Trends in Mathematical Sciences, , No. 1, (2018), 08-17.doi:10.20852/ntmsci.2017.240

3
A. M. Akinlar, A. Secer, M. Bayram, Numerical solution of fractional Benney equation, Appl. Math. Inf. Sci., , No. 4, (2014), 1633-1637. doi.org/10.12785/amis/080418

4
R. L. Bagley, P. J. Torvik, A theoretical basis for application of fractional calculus to viscoelasticity, Journal of Rheology, , No. 3, (1983), 201-210. doi.org/10.1122/1.549724

5
D. A. Benson, S. W. Wheatcraft, Application of fractional advection-dispersion equation, Water Resources Research, , No. 6, (2000), 1403-1412. doi.org/10.1029/2000WR900031

6
C.M. Chen, F. Liu, V. Anh, I. Turner, Numerical methods for solving a two dimensional variable-order anomalous subdiffusion equations, Mathematics of Computation, , No. 277, (2012), 345-366. doi.org/10.1090/S0025-5718-2011-02447-6

7
C. M.Chen, F. Liu, I. Turner, V. A. Anh, Fourier method for fractional diffusion equation describing sub-diffusion, Journal of Computational Physics, , No. 2, (2007), 886-897. doi.org/10.1016/j.jcp.2007.05.012

8
A. M. Chen, Y. Chen, M. Vinangre, D. Xue, V. Feliu, Fractional order systems and controls fundamentals and applications, Adva. Indus. Con. Springer-Verlag, London, (2010). doi.org/10.1007/978-1-84996-335-0

9
H. D. Eid, H. A. Bhrawy, D. Baleanu, S. Samer, E. Eldien, The operational matrix formulation of theJacobi tau approximation for space fractional diffusion equation, Springer Open journal, Advances in difference equations, (2014), 201-231. doi.org/10.1186/1687-1847-2014-231

10
A.Esen, Y. Ucar, N. Yagmurlu, O. Tasbozan, A Galerkin finite element method to solve fractional diffusion and fractional diffusion-waveequations, Mathematical Modelling and Analysis, , No. 2, (2013), 260-273. doi.org/10.3846/13926292.2013.783884

11
H. Fallahgoul, S. Focardi, F. Fabozzi, Fractional calculus and fractional processes with applications to financial economics, Theory and Application, San Diego, CA, Elsevier Science, UK (2016), 120.

12
K. Ibrahim, N. Kale, R. Serife, Bayramoglu, A new difference scheme for time fractional heat equations based on Crank-Nicholson method,Fractional Calculus and Applied Analysis, , No. 4, (2013),892-910. doi.org/10.2478/s13540-013-0055-2

13
K. Ibrahim, N. Kale, Finite difference method of fractional parabolic partial differential equations with variable coefficients,Int J. of Contemporary Mathematics Sciences, , No. 16, (2014), 767-776. doi.org/10.12988/ijcms.2014.411118

14
K. Ibrahim, N. Kale, R. Serife, Bayramoglu, A characheristics difference scheme for time fractional heat equations based on Crank-Nicholson difference scheme, Hindawi Publishing Corporation Abstract and Applied Analysis, , Article ID 548292. doi:10.1155/2012/548292

15
L. Kexue, P. Jigen, Laplace transform and fractional differential equations, Applied Mathematics Letters, , No. 12, (2011), 2019-2023. doi.org/10.1016/j.aml.2011.05.035

16
M. M. Khadar, N. H. Sweilam, T. A Assiri, On numerical solution for fractional wave equation using Legendre psedospectral method,International Journal of Pure and Applied Mathematics, , No. 4. (2013), 307-319. doi.org/10.12732/ijpam.v84i4.1

17
M. M. Khader, On numerical solutions for fractional diffusion equation, Communications in Nonlinear Science and NumericalSimulation, , No.6, (2011), 2535-2542. doi.org/10.1016/j.cnsns.2010.09.007

18
N. M. Sherif, I. Abouelfarag, T. S. Amer, Numerical solution of fractional delay differential euations using spline functions,International Journal of Pure and Applied Mathematics, , (2014), 73-83. doi.org/10.12732/ijpam.v90i1.10

19
M. M. Meerschaert, H. Scheffler, C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation, Journal of Computational Physics, , No.1, (2006), 249-261. doi.org/10.1016/j.jcp.2005.05.017

20
M. Moshrefi, J. K. Hammond, Physical and geometrical interpretations of fractional operators, Journal of the Franklin Institute, , No. 6, (1998), 1077-1086. doi.org/10.1016/S0016-0032(97)00048-3

21
H. M. Osama, I. A. Khlaif, Adomian decomposition method for solving delay differential equations of fractional order, IOSR Journal of Mathematics, , No. 6, (2014), 01-05. doi.org/10.9790/5728-10610105

22
G. Wanhai, Y. Chen, Wavelet method for nonlinear partial differential equations of fractional order, Computer and Information Science,, No. 5, (2011), 28-35. doi.org/10.5539/cis.v4n5p28

23
G.C. Wu, A fractional variational iteration method for solving fractional nonlinear differential equations, Computers and Mathematics with Applications, , No. 8, (2011), 2186-2190. doi.org/10.1016/j.camwa.2010.09.010

24
X. Zhang, J. Zhao, J. Liu, B. Tang, Homotopy perturbation method for two dimensional time-fractional waveequation, Applied Mathematical Modeling, , (2014), 5545-5552. doi.org/10.1016/j.apm.2014.04.018.

# How to Cite?

DOI: 10.12732/ijpam.v120i1.10 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 120
Issue: 1
Pages: 111 - 125