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ABSTRACT: In this note we study some properties of an new inverse Weibull cu-

mulative function proposed by Afify, Shawky and Nassar [1]. More precisely, we prove

estimates for the ”saturation” - d about Hausdorff metric. A new activation functions

are defined. We consider also modified families of functions with ”polynomial vari-

able transfer” with applications to the Antenna–feeder Analysis. Numerical examples,

illustrating our results using CAS MATHEMATICA are given.
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1. INTRODUCTION

The Weibull distribution has been widely used in survival and reliability analyses.

Some modifications, properties and applications of Weibull and Weibull-R families of

distributions can be found in [2]–[13].

Definition 1. In [1] the authors proposed the following new probability distribu-

tion with cumulative distribution function:
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M(t) = 1−
ln
(

1 + δ − δe
−λt−α

)

ln δ
(1)

for t > 0, α > 0, λ > 0, δ > 0.

Various modifications of this ”powerful” class of functions have been proposed and

studied by a number of researchers.

We consider the following one–parameter family:

F (t) = 1−
ln

(

1 + δ − δe
− δ

t

)

ln δ
. (2)

Definition 2. [14], [15] The Hausdorff distance (the H–distance) [14] ρ(f, g)

between two interval functions f, g on Ω ⊆ R, is the distance between their completed

graphs F (f) and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (3)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB , xB) in R
2 is ||A−B|| =

max(|tA − tB|, |xA − xB |).

In this article we study some properties of the family (2) and prove estimates for

the ”saturation” - d about Hausdorff metric.

2. MAIN RESULTS

1. For the ”saturation” - d in the Hausdorff sense to the horizontal asymptote using

F (t) we have

F (d) = 1− d, (4)

i.e. d is the solution of the nonlinear equation

e
δ
d − ln δ

ln (1 + δ − δd)
= 0.

Let

c(δ, d) =
−δd

ln (1 + δ − δd)
:= c.

For 0 < δ, d ≤ 1
2 , we see that

1

2

(

1− 1√
2

)

≤ c(δ, d) ≤ 1.
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Figure 1: The functions G(d) and H(d) for: a) δ = 0.06; b) δ = 0.01.

Let

G(d) = e
δ
d + c

ln δ

δd
= 0. (5)

Consider the following good approximation to the G(t) (see, Fig. 1).

H(d) = e
δ
d
+d − c ln

1

δ
= 0. (6)

From (6) we find
δ

d
+ d = ln c+ ln

(

ln

(

1

δ

))

:= 2b

d =
δ

b+
√
b2 − δ

.

For sufficiently small values of δ we have

d ≈ δ

2b
.

Thus, we prove the following

Theorem 1. Let 0 < δ, d ≤ 1
2 . For the ”saturation” - d we have

d =
δ

b+
√
b2 − δ

. (7)

For sufficiently small values of δ we have

d ≈ δ

2b
≈ δ

1 + ln
(

ln
(

1
δ

)) . (8)
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The modified family F (t) for

a) δ = 0.12, d = 0.148095;

b) δ = 0.06, d = 0.0805819;

c) δ = 0.01, d = 0.0163254

is plotted on Fig. 2.

2. Let t0 is the value for which F (t0) =
1
2 .

The one–sided Hausdorff distance d1 between F (t) and the shifted Heaviside step

function

ht0(t) =



















0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

satisfies the relation:

F (t0 + d1) = 1− d1. (9)

The following theorem gives upper and lower bounds for d1.

Theorem 2. Let δ ∈ (0.06, 0.5) and B > 1
2.1e

1.05 where

B = 1 + (1 + δ −
√
δ)δ−

3
2
ln(1 + δ −

√
δ)

ln δ
ln2

(

ln(1 + δ −
√
δ)

ln δ

)

Then the one–sided Hausdorff distance d1 between F (t) and ht0(t) satisfies the following

inequalities

d1,l :=
1

2.1B
< d1 <

ln 2.1B

2.1B
:= d1,r. (10)

The Proof follows the ideas given in [16] and will be omitted.

Some computational examples using relations (9)–(10) are presented in Table 1.

δ t0 d1,l d1 computed by (9) d1,r

0.07 0.0279024 0.020462 0.0770817 0.0795805

0.08 0.0331862 0.0245766 0.0859485 0.09108

0.1 0.0445214 0.0334624 0.102866 0.113683

0.15 0.0770659 0.0587756 0.14125 0.166572

0.2 0.11529 0.0870713 0.175118 0.212543

0.25 0.158979 0.116742 0.205259 0.250737

0.3 0.2008027 0.146471 0.232184 0.28136

Table 1: Bounds for d1 computed by (9)–(10) for various values of δ.
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Figure 2: The function F for: a) δ = 0.12, d = 0.148095; b) δ = 0.06, d =

0.0805819; c) δ = 0.01, d = 0.0163254.

3. SOME APPLICATIONS

1. Consider the following model with ”polynomial variable transfer”:

F ∗(t) = 1−
ln

(

1+δ−δe
− δ

f(t)

)

ln δ
,

f(t) =

n
∑

ait
i, a0 = 0.

(11)
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Figure 3: A typical filter characteristic by using model F ∗(t) for n = 3, δ =

0.13, a0 = 0, a1 = 0.4, a2 = −1.5, a3 = 0.65.

For example, a typical filter characteristic by using model F ∗(t) for n = 3, δ =

0.13, a0 = 0, a1 = 0.4, a2 = −1.5, a3 = 0.65 is plotted on Fig. 3.

2. Consider the following adaptive functions:

M1(t) = 1−
ln

(

1 + δ − δe
− δ

|t(1−t)(2−t)|

)

ln δ
. (12)

M2(t) = 1−
ln

(

1 + δ − δe
− δ

|t(1−t)(2−t)(3−t)|

)

ln δ
. (13)

Obviously, these new adaptive functions (M1(t) and M2(t)) can be used successfully

to simulate typical filter characteristics.

The models M1(t) for δ = 1.31 and M2(t) for δ = 1.91 are plotted on Fig. 4.

3. Let t = b cos θ + c. Consider the function |F ∗(t)|.
Then, for example, typical emitting charts using |F ∗(t)| for
a) n = 4, δ = 0.3, a0 = 0, a1 = 0.99, a2 = −3.8, a3 = 5.7, a4 = −4.8, b = 4.5, c =

−0.18;

b) n = 3, δ = 0.22, a0 = 0, a1 = −0.01, a2 = 1.1, a3 = −1.1, b = 3.4, c = −0.18

are plotted on Fig. 5 – Fig. 6.

A typical emitting chart using |F ∗(θ)| for n = 6, δ = 0.22, a0 = 0, a1 = −0.01, a2 =

1.1, a3 = −1.1, a4 = 0.15, a5 = 0.5, a6 = −0.02 b = 1.2, c = 0.005 is depicted on Fig.

7.
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Figure 4: The models M1(t) for δ = 1.31 and M2(t) for δ = 1.91 as a typical

filter characteristic.

Consider the following modification of the model (1):

H(t) = 1−
ln

(

1 + δ − δe
− δ

tδ

)

ln δ
. (14)

For the ”saturation” - d2 in the Hausdorff sense to the horizontal asymptote using

H(t) we have

H(d2) = 1− d2, (15)

i.e. d2 is the solution of the nonlinear equation

e
δ

dδ2 − ln δ

ln (1 + δ − δd)
= 0.

The reader can formulate the corresponding approximation problem for this cumu-

lative function following results from Theorem 1.

The basic problems considered in [17] (see, also [18]–[28]) are approximation of

functions and point sets by algebraic and trigonometric polynomials in Hausdorff met-

ric as well as their applications in the field of antenna-feeder technique, analysis and
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Figure 5: A typical emitting chart using |F ∗(t)| for n = 4, δ = 0.3, a0 =

0, a1 = 0.99, a2 = −3.8, a3 = 5.7, a4 = −4.8, b = 4.5, c = −0.18.

synthesis of antenna patterns and filters, noise minimization by suitable approximation

of impulse functions.

Unfortunately, these diagrams cannot always be realized in practice.

Specialists working in these scientific fields have a say.

For some modelling and approximation problems, see [29]–[49].
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Figure 6: A typical emitting chart using |F ∗(t)| for n = 3, δ = 0.22, a0 =

0, a1 = −0.01, a2 = 1.1, a3 = −1.1, b = 3.4, c = −0.18.
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