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1. Introduction

The concept of entropy or uncertainty plays an important role in the field of
information theory. Information theory and the concept of entropy or uncer-
tainty have found applications in diverse fields such as: electrical engineering,
psychology, biology, economics, social sciences, ecology, statistics, computer
science and fuzzy set theory among other fields. Shannon’s entropy [10] is for-
mulated in terms of a probability distribution. In fact Shannon proved [1] that
the measure of the amount of information, Shannon’s entropy, can be uniquely
determined by some rather natural properties or postulates. Also we can say
that entropy measures, essentially, the degree of uncertainty associated with a
probability distribution.

Assume that there are n outcomes of a random experiment and the i-th
outcome can occur with probability pi. In other words, let P = {p1, p2, ..., pn}
be the probability distribution. Then Shannon’s measure of uncertainty or
entropy, denoted by H(P ), is defined as

H(P ) = −
n

∑

i=1

pi ln pi.

Renyi [9] considered the problem of finding other measures of uncertainty
that may prove to be suitable in other areas. He introduced a measure of uncer-
tainty involving one parameter. Since 1961, various researchers have generalized
the concept of entropy involving parameters that are based on the probability
theory. Some of the measures have found applications in different disciplines.
For a complete discussion of generalized measures of entropy or uncertainty
refer [1] and for applications refer [6] .

As pointed out in the previous paragraph, there exist other generalized
measures of entropy in the literature of information theory. One reason to
consider alternative measures of uncertainty or entropy is to have the flexibility
which may be necessary in a variety of applications. Also different measures of
entropy lead to a unique model for each situation. Another reason to consider
generalized measures of entropy is that some probability distributions can be
obtained by maximizing Shannon entropy but with complicated and artificial
constraints. Thus, if we have at our disposal a variety of measures, then we
can obtain a variety of models and the model that is closest to observations
will emerge as the satisfactory one. In the literature, some of the generalized
measures have been applied successfully to different fields such as marketing
and accounting [6]. In this paper we will consider the measure involving one
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parameter proposed in [5]. The uncertainty measure proposed by Havrda and
Charvat, called uncertainty (or entropy) of type β, is defined as

Hβ(P ) = Aβ

(

∑

pi(p
β−1
i − 1

)

, β > 0, β 6= 1 ,

where Aβ =
(

e1−β − 1
)−1

.
One of the reasons for considering this measure is that it has been used by

various researchers in different fields.
Yager [11] considered the following problem as a motivation to generalize

the Shannon’s measure of uncertainty. Assume that during an election for a
president we have four candidates and let p1, p2, p3, and p4 be their probabilities
of winning the election. The amount of uncertainty as to who shall win the
election can be computed both by Shannon’s entropy and entropy of type β.
Let us assume that three candidates have similar ideas on domestic agenda.
We are interested in the candidate’s position on domestic agenda rather than
the actual identity of the person. Assume that the first three candidates have
the same position on domestic agenda but the fourth candidate has a different
position from other candidates. We are interested in measuring the uncertainty
with regards to the domestic agenda. It is clear that the uncertainty in this
situation would be less than the uncertainty concerning the original situation
with regard to who shall be the president. The simple reason being that the
three candidates’ positions are the same.

In order to handle this problem, Yager [11] used the concept of a measure
of similarity introduced by Zadeh [12]. The concept of similarity relation is
an extension of the concept of equivalence relation. Let us assume that X
is a set containing n elements x1, x2, . . . , xn. Then a fuzzy subset A of X is
characterized by a membership function µA(·) which associates with each x in X
a value called membership in the interval [0, 1]. In other words µA(·) represents
the degree of membership of x in A, that is, the closer is the value of µA(·)
to 1, the higher is the degree of membership of x in A. It is clear that if the
membership function can only take the value either 0 or 1, then the fuzzy set,
A, will reduce to the ordinary or crisp set. Also it is clear that the fuzzy set
can deal with both precise and imprecise information.

A fuzzy relation R on the set X × Y is a fuzzy subset such that for every
pair (x, y), R (x, y) measures the membership grade of the pair (x, y) in R and
it takes value in a unit interval [0, 1]. In other words R (x, y) can be considered
as the degree of relationship between x and y. Now we can define the concept
of a similarity relation as follows:

Defintion 1. A similarity relation S on X is a fuzzy subset on X ×X that
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satisfies the following properties:

1. S is reflexive: S(x, x) = 1 for all x ∈ X.

2. S is symmetric: S(x, y) = S(y, x).

3. S is transitive: S(x, z) ≥ Maxy [S(x, y) ∧ S(y, z)], where (∧ = min].

It is easy to see that an equivalence relation is a special case of a similarity
relation. (In the case of equivalence relation S(x, y) ∈ {0, 1}).

Also we can define a similarity class as follows.

Defintion 2. Let S be a similarity relation defined on X. With each x ∈ X
we can associate a fuzzy subset of X. This fuzzy subset is called the similarity
class of X, denoted as S[x] and its membership function is defined as

S[x](y) = S (x, y) .

Note that the different similarity classes do not have the nice crisp charac-
teristic of being either disjoint or equal. In fact they can overlap. However, the
similarity classes do cover X. It means that

X = ∪x∈XS[x].

The following facts are true about similarity classes.

1. If x and y are such that S (x, y) = 1, then their similarity classes are
equal.

2. If x and z are such that S (x, z) = 0, then their similarity classes are
disjoint.

Thus we can use 1−S (x, y) as a measure of the degree of distinction between
two similarity classes S

[x]
and S

[y]
.

Defintion 3. A fuzzy subset A is called normal if there exists at least one
element having membership value equal to one.

Because for any simililarity class S
[x]

, S
[x]

(x) = 1, therefore all the similarity
classes are normal.

Defintion 4. Let A be a fuzzy subset of X. Then the cardinality of A,
denoted CardA, is defined as CardA =

∑

x∈X A(x).

It is to be noted that Card
(

S[x]

)

≥ 1.
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Let A be a fuzzy subset of X and P = {p1, p2, . . . , pn} be a probability
distribution on X. Then the probability of A, Pr(A), is defined as

Pr(A) =
n

∑

i=1

piA(xi).

In other words, the probability of A is the expected membership grade of
A [13].

In the next section we shall consider the measure of uncertainty of type β
under similarity relation and prove some interesting results.

2. Uncertainty of Type β Under Similarity Relation

We defined the measure of uncertainty of type β,Hβ(P ), in the previous sec-
tion for any probability distribution. It is known that this measure takes the
minimum value 0 if pi = 1 for some xi. Also we know that it takes its maximum

value when pi = 1
n

for all xi. The maximum value is
n1−β − 1

e1−β − 1
.

Now consider the problem of comparing elements or objects of X with re-
spect to some attribute or characteristic (variable) V. Also let there be a simi-
larity relation on X generated by this attribute V. Then consider the problem of
selecting an object or element from X based on the given probability distribu-
tion on X. Our interest is in determining the uncertainty of an element chosen
rather than its identity with respect to this attribute V . In order to handle
this situation, we shall consider a generalization of the measure of uncertainty
of type β. This generalization is defined as

Defintion 5. The measure of uncertainty of type β of the probability
distribution P with respect to the similarity relation S, Hβ (P/S) , is defined
as

Hβ (P/S) = Aβ[
∑

pi(a
β−1
i − 1)], β > 0, β 6= 1 ,

where

ai =

n
∑

j=1

pjS[xi](xj) =

n
∑

j=1

pjS(xi, xj).

It is to be noted that
lim
β→1

Hβ (P/S) = H (P/S) ,

where
H (P/S) = −

∑

pi ln ai
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is the Shannon entropy of the probability distribution P with respect to the
similarity relation S.

Now we shall consider the usual situation in which we are interested in the
uncertainty with respect to the identity of the element selected. In other words,
consider the similarity relation SI defined as

SI(x, x) = 1 for all x in X ,

SI(x, y) = 0 for x 6= y .

In other words, two elements of SI are similar iff they are same or identical.
Thus

ai =

n
∑

j=1

pjS(xi, xj) = pi.

Therefore

Hβ (P/S) = Aβ[
∑

pi(a
β−1
i − 1)] = Aβ[

∑

pi(p
β−1
i − 1)] = Hβ(P ).

In the following theorem, we will consider the situation when S is an equivalence
relation.

Theorem 1. Let S be an equivalence relation with q distinct equivalence
classes E1, E2, . . . , Eq. Then.

Hβ (P/S) = Aβ [

q
∑

i=1

bi(b
β−1
i − 1)], β > 0, β 6= 1 ,

where bi is the sum of the probabilities of the elements in class Ei.

Proof. We have

Hβ (P/S) = Aβ[

n
∑

i=1

pi(a
β−1
i − 1)] ,

where

ai =

n
∑

j=1

pjS(xi, xj).

Also if xi and xj are in the same equivalence class, then S (xi, xj) = 1 otherwise
S (xi, xj) = 0. Thus

ai = bi =
∑

j

pj ,
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where summation is over those j such that S (xi, xj) = 1.
In other words, the original probability distribution P is replaced by another

probability distribution B = (b1, b2, . . . . . . , bq), where bi is the probability of the
i-th equivalence class and is equal to the sum of the probabilities of the elements
in that class. Thus Hβ (P/S) is essentially the uncertainty measure of type β,
Hβ(B), where B is the probability distribution of the equivalence class.

Corollary. For any equivalence relation S, we have

Hβ(P/S) ≤ Hβ(P ).

Proof. We know that

Hβ(P ) = Aβ[

n
∑

i=1

pi(p
β−1
i − 1)] ,

and

Hβ (P/S) = Aβ [

q
∑

j=1

bj(b
β−1
j − 1)].

Let ui be the value of bj such that xi ∈ Ej. Also bj is the sum of the
probabilities of the elements in the equivalence class Ej . Thus

Hβ (P/S) = Aβ[

n
∑

i=1

pi(u
β−1
i − 1)].

Since ui ≥ pi, thus we have

Hβ (P ) − Hβ (P/S)

= Aβ[

n
∑

i=1

pi(p
β−1
i − 1)] − Aβ [

n
∑

i=1

pi(u
β−1
i − 1)]

= Aβ[
n

∑

i=1

pi(p
β−1
i − uβ−1

i )] ≥ 0.

This completes the proof.

Now we shall consider the general situation when S is a similarity relation.

Theorem 2. Let P be a probability distribution and S be a similarity
relation on the set X. Then we have

Hβ(P/S) ≤ Hβ(P ).



220 G. Arora, F. Petry, T. Beaubouef

Proof. Since ai =
∑n

j=1 pjS(xi, xj), we have ai ≥ pi. Thus

Hβ (P ) − Hβ (P/S)

= Aβ[

n
∑

i=1

pi(p
β−1
i − 1)] − Aβ [

n
∑

i=1

pi(a
β−1
i − 1)]

= Aβ[
n

∑

i=1

pi(p
β−1
i − aβ−1

i )] ≥ 0.

In other words, the uncertainty measure of type β is still an upper bound on
the uncertainty, when S is a similarity relation. Also we note that

Hβ (P ) − Hβ (P/S) = Aβ[

n
∑

i=1

pi(p
β−1
i − aβ−1

i )].

This means that each similarity class causes a reduction in uncertainty in ac-
cordance with the term Aβ(pβ−1

i − aβ−1
i ).

If ai = pi, then there is no contribution of the similarity class. Also we
note that if the similarity class is larger, then the reduction in uncertainty is
large. Thus the reduction in uncertainty occurs due to the introduction of the
similarity class and for any probability distribution, uncertainty measure of
type β provides an upper bound on the uncertainty.

In the following, we shall define the least generous and the most gener-
ous similarity relation and prove some interesting facts about these similarity
relations.

Defintion 6. Let S and S′ be two similarity relations on X such that for
every x, y in X

S (x, y) ≥ S′ (x, y) .

Then S is a more generous similarity relation and we denote this as S ≥ S′.

Defintion 7. Let SI be the similarity relation such that

SI (x, x) = 1 for all x in X

SI (x, y) = 0 x 6= y.

Then SI is called the least generous similarity relation.

Defintion 8. Let S0 be the most generous similarity relation defined by
S0(x, y) = 1 for all x.
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Corollary. For any similarity relation S

Hβ(P/SI) ≥ Hβ(P/S) .

Proof. It is clear that

Hβ (P/SI) = Hβ(P ).

Thus

Hβ(P ) = Hβ(P/SI) ≥ Hβ(P/S).

Therefore, the least generous similarity relation gives us the most uncer-
tainty of type β.

Theorem 3. For any probability distribution P on X, we have

H
β

(

P/S0
)

= 0.

Proof.

Hβ

(

P/S0
)

= Aβ [
n

∑

i=1

pi(a
β−1
i − 1)] ,

where

ai =

n
∑

j=1

pjS
0(xi, xj).

But S0 (xi, xj) = 1. Therefore ai =
∑

j pj = 1. Thus

Hβ

(

P/S0
)

= Aβ[

n
∑

i=1

pi(1
β−1 − 1)] = 0 .

This completes the proof.

Also we can easily check that for any probability distribution P and simi-
larity relation S, the relation H

β
(P/S) ≥ 0 is always true. This is due to the

fact that

ai =
∑

j=1

piS (xi, xj) ≤ 1.

From the above discussion, we can conclude that for any probability distri-
bution P and similarity relation S, the following is true

0 = Hβ

(

P/S0
)

≤ Hβ(P/S) ≤ Hβ(P/SI) = Hβ(P ), β > 0, β 6= 1.
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In the following theorem, we shall obtain a result with regards to the or-
dering of the uncertainty measure of type β and the similarity relationship.

Theorem 4. Let S and S′ be two similarity relations on the set X and let
P be any probability distribution on X. Also let S be more generous than S′

(S ≥ S
′

). Then we have

Hβ

(

P/S′
)

≥ Hβ (P/S) .

In other words, the more generous is the similarity relationship, the less is
the uncertainty of type β in the environment.

Proof.

Hβ (P/S) = Aβ [

n
∑

i=1

pi(a
β−1
i − 1)] ,

Hβ

(

P/S
′

)

= Aβ [
n

∑

i=1

pi((a
′
i)

β−1 − 1)] ,

where
ai =

∑

j=1

pjS (xi, xj) ,

and
a′i =

∑

j=1

pjS (xi, xj) .

Since S ≥ S′, then S(xi, xj) ≥ S′ (xi, xj) . This means that ai ≥ a′i. There-
fore,

Hβ

(

P/S′
)

− Hβ (P/S)

= Aβ[

n
∑

i=1

pi(a
β−1
i − 1)] − Aβ[

n
∑

i=1

pi((a
′
i)

β−1 − 1)]

= Aβ[

n
∑

i=1

pi(a
β−1
i − (a′i)

β−1] ≥ 0.

This completes the proof.

What is the effect of the probability distribution on the uncertainty measure
of type β under a given similarity environment? In the next theorem, we will
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show that the certainty in regards to a probability distribution gives us certainty
under any S.

Theorem 5. Let us assume that S be any similarity relation on X and P
be a probability distribution on X such that pi = 1 for some xi. Then

Hβ (P/S) = 0.

Proof. Let us assume that pk = 1 for some xk. Then

Hβ(P/S) = Aβ[

n
∑

i=1

pi(a
β−1
i − 1)] = Aβ(aβ−1

k − 1).

Also ak =
∑

j=1 pjSk(xj) = pkSk(xk) = 1. Thus Hβ(P/S) = 0. This completes
the proof.

Theorem 6. Let all the elements of X of cardinality n be equally likely.
Then

Hβ(P/S) ≤
n1−β − 1

e1−β − 1
.

Proof. Assume that the elements of X are equally likely. Then pi = 1
n

for
each i. Furthermore

Hβ(P/S) = Aβ [
n

∑

i=1

1

n
(aβ−1

i − 1)] ,

where

ai =

n
∑

j=1

pjSi(xj) =
1

n
Card[S[i]].

Thus

Hβ(P/S) = Aβ[

n
∑

i=1

1

n
((

1

n
Card[S[i]])

β−1 − 1)]

= Aβ[
n

∑

i=1

n−βCard[S[i]]
β−1 − 1]

Since Card(S
[i]

) ≥ 1, therefore Hβ(P/S) ≤ Aβ[n−β − 1]. This completes the
proof.
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Now we would like to know that for any similarity relation S, does the
equally likely probability give the maximum entropy? In the following example,
we will see that it is not always the case.

Example. Let X = {x1, x2, x3} and

S =





1 1 0
1 1 0
0 0 1





a) Assume that p1 = p2 = p3 = 1/3 and β = 2.

Hβ(P/S) =
4e

9(e − 1)
.

b) Assume that p1 = p3 = 1/2, p2 = 0 and β = 2.

Hβ(P/S) =
e

(e − 1)
.

This example shows that the equally likely elements of a set do not give us the
maximum entropy under all similarity relations.

In the following theorem, an interesting relation is proved for equivalence
relations.

Theorem 7. Let X be a set with n elements. Let S be an equivalence
relation on X which has m equivalence classes. Also assume that P ∗ is a
probability distribution on X such that the sum of the probabilities of the
elements in each equivalence class is 1

m
. Then, we have

Hβ(P ∗/S) ≥ Hβ(P/S) for any P.

Proof.

Hβ(P/S) = Aβ[
n

∑

i=1

pi(a
β−1
i − 1)],

where

ai =

n
∑

j=1

pjS(xi, xj).

We have S(xi, xj) = 1 or 0 because S is an equivalence relation. Therefore,
ai =

∑

j∈Si
pj. Let E1, E2, . . . , Em be the equivalence classes and let qi be the
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sum of the probabilities in each class i. Then

Hβ(P/S) = Aβ[

m
∑

i=1

qi(q
β−1
i − 1)].

We know that this attains maximum value when qi = 1/m.

3. Conclusion

We have studied the generalized form of uncertainty measure of type β under
similarity relations. The results, proved here, extend the results proved by
Yager [11]. When β → 1, the results proved in this paper reduce to Shannon’s
entropy, proved by Yager [11].
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