A NOTE ON THE TAFT’S PROBLEM

Hao Zhifeng¹, Feng Lianggui²

¹Department of Applied Mathematics
College of Science
South China University of Technology
Guangzhou 510641, P.R. CHINA,
e-mail: mazfhao@scut.edu.cn

²Department of Mathematics and System Science
National University of Defense Technology
Changsha 410073, P.R. CHINA
e-mail: flg2000@yahoo.com

Abstract: Let F be a field of characteristic zero. In this paper we work out the linearly recursive relation on Lie multiplication $[f, g]$ in Witt algebras $(W^{(i)})^o$ (resp. $(W^{(i)})^o$). This is an open problem proposed by Earl J. Taft. We show that if the characteristic polynomial $p(x)$ (resp. $q(x)$) of f (resp. g) $\in (W^{(i)})^o$ or $(W^{(i)})^o$ satisfy $p(x)|(x^i - a^i)$ and $q(x)|(x^i - a^i)$ for a in the algebraically closure of F, then $[f, g]$ satisfies $\text{LCM}(p(x), q(x))$, the least common multiple of $p(x)$ and $q(x)$. Some examples illustrate the results.

AMS Subject Classification: 16W30
Key Words: Lie multiplication, linearly recursive sequences, recursive relation, Lie coalgebras

1. Introduction

Let F be a field of characteristic zero. In this paper we describe some special recursive relations on Lie multiplications in Lie duals of the (one-sided) Witt algebra in one variable $W_1 = \text{Der } F[x]$ and of the 2-sided Witt algebra (or Vi-
the Lie bialgebra structures on closed of characteristic zero. We assume
Ng and Tafft show that Tafft's Lie bialgebra structure satisfies the classical Yang-Baxter equation (CYBE) for f, g have only singular root, and for any root a of characteristic polynomial of f, b of characteristic polynomial of g satisfy $a^i = b^i$. The Lie dual structure of W and W_1 have been studied by Michaelias [3, 4, 6], Nichols [7, 8] and Tafft [13, 14, 15, 16].

Recall that a Lie algebra L over F has a skew-symmetric multiplication $[,]$ satisfying the Jacobi identity. Reversing the arrows, a Lie coalgebra M over F has a comultiplication δ from M to $M \wedge M$, the skew-symmetric tensors in $M \otimes M$, which satisfies the co-Jacobi identity $(1 + \sigma + \sigma^2)(1 \otimes \delta)\delta = 0$, where σ is the permutation (123) in S_3 acting in the usual way on $M \otimes M \otimes M$. A Lie algebra L, which is simultaneously a Lie coalgebra is called a Lie bialgebra if $\delta \in Z^1(L, L \wedge L)$. If $\delta = \delta_r \in B^1(L, L \wedge L)$ for some $r \in L \wedge L$, L is called a coboundary Lie bialgebra. The condition is that $\delta_r(x) = [r, x]$ for all $x \in L$.

Every Lie algebra L over F has a dual Lie coalgebra L°, which is the sum of the good subspaces of L^\ast. A subspace V of L^\ast is good if the map $L^\ast \to (L \otimes L)^\ast$ dual to the Lie multiplication of L takes V to $V \otimes V$ (see [3, 15] for more details).

Let Witt algebras $W_1 = \text{Der } F[x]$, the Lie algebra of derivations of the polynomial algebra $F[x]$. W_1 has a basis $\{e_i\}$ for $i \geq -1$, where $e_i = x^{i+1}d/dx$ and $[e_i, e_j] = (j - i)e_{i+j}$. We identify W_1^\ast with sequences $(f_i)_{i \geq -1}$, where $f \leftrightarrow (f_i)$ means $f_1 = f(e_1)$, then W_1° has been identified as the space of linearly recursive sequences (see [7] for details). Similarly, for (full) Witt algebras $W = \text{Der } F[x, x^{-1}]$, W has a basis $\{e_i\}$ for $i \in \mathbb{Z}$, where $e_i = x^{i+1}d/dx$ and $[e_i, e_j] = (j - i)e_{i+j}$. We identity W° as the space of back-solving linearly recursive sequences. The sequence $(f_i)_{i \in \mathbb{Z}}$ is back-solving linearly recursive sequences if f_1 satisfying the recursive relation over F.

The various Lie coalgebra structure $W_1^{(i)}$ for $i \geq -1$, which are naturally non-isomorphic, are construct in [15] as follows. Let $r_i = e_0 \wedge e_i$. r_i satisfy the classical Yang-Baxter equation (CYBE) for W_1, i.e., $r_i \in W_1 \otimes W_1$ is a solution of the triple tensor product condition

$$\text{(CYBE)} \quad [r^{12}_i, r^{13}_i] + [r^{12}_i, r^{23}_i] + [r^{13}_i, r^{23}_i] = 0,$$

in $W_1 \otimes W_1 \otimes W_1$. The notation is that if $r_i = \sum a_j \otimes b_j$, then $r^{12}_i = \sum a_j \otimes b_j \otimes 1$, $r^{13}_i = \sum a_j \otimes 1 \otimes b_j$ and $r^{23}_i = \sum 1 \otimes a_j \otimes b_j$. Thus, $W_1^{(i)} = (W_1, \delta_{r_i})$ is a triangular coboundary Lie bialgebra (see [1] and [15] Proposition 1). In [9, 10], Ng and Tafft show that Tafft's Lie bialgebra structure $W_1^{(i)}$ on W_1 are all of the Lie bialgebra structures on W_1 up to isomorphism when F is algebraically closed of characteristic zero. We assume $i \in \mathbb{Z}^+$, as $\delta_0 = 0$ gives $(W_1^{(0)})^\circ$ the
structure of an abelian Lie algebra. Let \(\delta_i = \delta_{r_i} \), i.e., \(\delta_i(x) = [e_0 \wedge e_i, x] \). Then \(\delta_i(e_n) = n(e_n \wedge e_i) + (n - i)(e_0 \wedge e_{n+i}) \) be the Lie cobracket in \(W^{(i)} \). The Lie multiplication in \((W^{(i)})^o \) is described by

\[
[e^*_0, e^*_n] = (n - 2i)e^*_{n-i}, \quad \text{for } n \neq 0,
\]

\[
[e^*_n, e^*_i] = ne^*_n, \quad \text{for } n \neq 0, i,
\]

with all other Lie multiplication of the \(e^*_n \) being zero. Thus let \(f = \sum a_n e^*_n, g = \sum b_m e^*_m \in (W^{(i)})^o, \)

\[
[f, g] = \sum c_p e^*_p,
\]

where

\[
c_p = p(a_0 b_{p+i} - b_0 a_{p+i} + b_i a_p - a_i b_p) + i(a_{p+i} b_0 - a_0 b_{p+i})
\]

The formulas (1) is very important for obtain the algorithm on recursive relations of \([f, g] \in (W^{(i)})^o\). For \(i \in \mathbb{Z} \), a similar discussion is possible for the 2-sided Witt algebra \(W \). Let \(W^{(i)} \) is the Lie bialgebra \((W, \delta_i)\) with \(\delta_i(x) = [e_0 \wedge e_i, x] \) for \(i \in \mathbb{Z} \). The formulas (1) is also held for \((W^{(i)})^o \). Note that \(e^*_n \not\in (W^{(i)})^o \), we will use the basis \((a^i p^o)_{i \geq -1}^n\) for \(a \in F^x \) and \(n \in \mathbb{N} \).

In [13, 14, 15], Taft proposes an open problem on finding an algorithm for multiplying two given linearly recursive sequences under the above Lie multiplication. Let \(F \) be an algebraically closed field of characteristic zero, we have consider the Taft’s problem in [2]. We show that for \(f, g \in (W^{(i)})^o \) with \(i \neq 0 \), \([f, g]\) satisfies

\[
x^{\max(r_0, s_0)+1}(x - a_1)^{\max(r_1, s_1)+1} \ldots (x - a_k)^{\max(r_k, s_k)+1}(x - c_1)^{r_{k+1}+1} \cdot (x - c_2)^{r_{k+1}+1} \cdot \ldots \cdot (x - c_n)^{r_{k+1}+1} \cdot (x - d_1)^{s_{k+1}+1} \cdot \ldots \cdot (x - d_m)^{s_{k+1}+1}
\]

\[
(r \text{resp. } (x - a_1)^{\max(r_1, s_1)+1} \ldots (x - a_k)^{\max(r_k, s_k)+1}(x - c_1)^{r_{k+1}+1} \cdot (x - c_2)^{r_{k+1}+1} \cdot \ldots \cdot (x - c_n)^{r_{k+1}+1} \cdot (x - d_1)^{s_{k+1}+1} \cdot \ldots \cdot (x - d_m)^{s_{k+1}+1})
\]

in general, where the characteristic polynomial of \(f \) is \(p(x) = x^{r_0}(x - a_1)^{r_1} \ldots (x - a_k)^{r_k}(x - c_{k+1})^{r_{k+1}} \ldots (x - c_{k+n})^{r_{k+n}} \) (resp. \(p(x) = (x - a_1)^{r_1} \ldots (x - a_k)^{r_k}(x - c_{k+1})^{r_{k+1}} \ldots (x - c_{k+n})^{r_{k+n}} \)) and the characteristic polynomial of \(g \) is \(q(x) = x^{s_0}(x - a_1)^{s_1} \ldots (x - a_k)^{s_k}(x - d_{k+1})^{s_{k+1}} \ldots (x - d_{k+m})^{s_{k+m}} \) (resp. \(q(x) = (x - a_1)^{s_1} \ldots (x - a_k)^{s_k}(x - d_{k+1})^{s_{k+1}} \ldots (x - d_{k+m})^{s_{k+m}} \)), and \(\deg(p(x)) > 0, \deg(q(x)) > 0 \).

Where \(a_1, \ldots, a_k, c_{k+1}, \ldots, c_{k+n}, d_{k+1}, \ldots, d_{k+m} \) are distinct in \(F^x \), \(r_0, s_0 \in \mathbb{N} \) and \(r_1, \ldots, r_{k+n}, s_1, \ldots, s_{k+m} \in \mathbb{Z}^+ \). But for the case, which the root \(a_1, \ldots, a_k \) (resp. \(b_1, \ldots, b_k \)) of the characteristic polynomial of \(f \) (resp. \(g \)) \((W^{(i)})^o \) (or \((W^{(i)})^o \) satisfy
\[a^i = b^j \] it is more complex. In this paper, we will give a more explicit algorithm for the recursive relations on \([f, g] \in (W_1^{(i)})^o, (W^{(i)})^o\) in this case.

Throughout the set of non-zero elements of \(F\) is denoted \(F^\times\). We use \(\mathbb{Z}\) denote integers, \(\mathbb{N}\) for the non-negative integers, \(\mathbb{N}_\leq\) for the integers greater than \(-1\), and \(\mathbb{Z}^+\) for the positive integers. In Section 2, 3, 4 and 5 (except for the last section, Section 6), we assume that \(F\) is an algebraically closed field. See [11, 16] for a development of the Hopf algebraic structure of linearly recursive sequences and see [12] for Hopf algebra and coalgebra background.

Lemma 1. Let \(F\) be an algebraic closure filed. If \(f = \{f_j\} \in (W_1^{(i)})^o\) is a linearly recursive sequence with the characteristic polynomial \(p(x) = (x - a_1)\cdots(x - a_n)\) and \(a_1, \cdots, a_n\) are distinct in \(F^\times\) then

\[f_j = t_1 a_i^j + \cdots + t_n a_n^j, \]

for \(j \in \mathbb{Z}\).

Lemma 2. Let \(\{a^j\}, \{b^k\} \in (W^{(i)})^o\) for \(j, k \in \mathbb{Z}\), where \(a, b \in F^\times\) such that \(a^i = b^j\). Then \(\{a^j\}, \{b^k\}\) = 0 for \(a = b\) and \(\{a^j\}, \{b^k\}\) satisfies \((x - a)(x - b)\) for \(a \neq b\).

Proof. If \(a = b\) then \(\{a^j\} = \{b^k\}\). Thus \(\{a^j\}, \{b^k\}\) = 0.

Now let \(a \neq b\). By the formulas \(c_p = \{a^j\}, \{b^k\}\) of (1)

\[c_p = p(b^{p+i} - a^{p+i} + b^ia^p - a^i b^p) + i(a^{p+i} - b^{p+i}). \]

Since \(a^i = b^j\),

\[c_p = p((b^ia^p - a^{p+i} + b^ia^p - a^i b^p) + i(a^{p+i} - b^{p+i}) \]

\[= i(a^{p+i} - b^{p+i}). \]

So \(\{a^j\}, \{b^k\}\) = \(c_p\) satisfies \((x - a)(x - b)\). This completes the proof of Lemma.

Lemma 3. Let \(f, g\) be the linearly recursive sequences. Let the characteristic polynomial of \(f\) be \(p(x)\) and the characteristic polynomial of \(g\) be \(q(x)\) with \(\deg(p(x)) > 0, \deg(q(x)) > 0\). Then \(f + g\) satisfies \(\text{LCM}(p(x), q(x))\), the least common multiple of \(p(x)\) and \(q(x)\).

Now we can proof our main result.

Theorem 4. Let \(F\) be an algebraically closed field. Let \(f, g \in (W^{(i)})^o\) and \(f\) with the characteristic polynomial of \(p(x) = (x - a_1)\cdots(x - a_k)(x - c_1)\cdots(x - c_n)\), \(g\) with the characteristic polynomial of \(q(x) = (x - a_1)\cdots(x -
If $a_1, \ldots, a_k, d_1, \ldots, d_m$ are distinct in F^* and satisfy $a_\alpha^i = b_\beta = c_\gamma$ for $1 \leq \alpha \leq k, 1 \leq \beta \leq n, 1 \leq \gamma \leq m$, then $[f, g]$ satisfies

$$(x - a_1) \cdots (x - a_k)(x - c_1) \cdots (x - c_n)(x - d_1) \cdots (x - d_m).$$

Proof. By Lemma 1,

$$f = \{f_i\} = \{t_1a_1^j + \cdots + t_ka_k^j + t_{k+1}c_1^j + \cdots + t_{k+m}c_n^j\},$$

and

$$g = \{g_j\} = \{s_1a_1^{j_1} + \cdots + s_ka_k^{j_1} + s_{k+1}d_1^{j_1} + \cdots + s_{k+m}d_m^{j_1}\}.$$

Thus,

$$[f, g] = \{(t_1a_1^j + \cdots + t_ka_k^j + t_{k+1}c_1^j + \cdots + t_{k+n}c_n^j), \{s_1a_1^{j_1} + \cdots + s_ka_k^{j_1} + s_{k+1}d_1^{j_1} + \cdots + s_{k+m}d_m^{j_1}\}\} = \sum_{u=1}^k \sum_{v=1}^n s_us_k^{j_1}\{a_u^j\}, \{a_v^{j_1}\}\}
+ \sum_{u=1}^k \sum_{v=1}^n t_us_k^{j_1}\{a_u^j\}, \{d_v^{j_1}\}\}
+ \sum_{u=1}^n \sum_{v=1}^m t_{k+u}s_k^{j_1}\{c_{k+v}^j\}, \{a_v^{j_1}\}\}
+ \sum_{u=1}^n \sum_{v=1}^m t_{k+u}s_k^{j_1}\{c_{k+v}^j\}, \{d_v^{j_1}\}\}
= \text{sum (1)} + \text{sum (2)} + \text{sum (3)} + \text{sum (4)}.$$

By Lemma 2, the sum (1) satisfies

$$(x - a_1) \cdots (x - a_k),$$

the sum (2) satisfies

$$(x - a_1) \cdots (x - a_k)(x - d_1) \cdots (x - d_m),$$

the sum (3) satisfies

$$(x - a_1) \cdots (x - a_k)(x - c_1) \cdots (x - c_n),$$

the sum (4) satisfies

$$(x - c_1) \cdots (x - c_n)(x - d_1) \cdots (x - d_m).$$

So $[f, g]$ satisfies

$$(x - a_1) \cdots (x - a_k)(x - c_1) \cdots (x - c_n)(x - d_1) \cdots (x - d_m).$$
by Lemma 3. This completes the proof of theorem. \qed

As for the case that F may be not algebraically closed field, we have the following corollary, which followed from [7] Lemma 2.

Corollary 5. Let $f, g \in (W^{(i)})^o$ and f with the characteristic polynomial of $p(x)$, g with the characteristic polynomial of $q(x)$. If $p(x) | (x^{i} - a^{i})$ and $q(x) | (x^{i} - a^{i})$, where a is in the algebraically closure of F, then $[f, g]$ satisfies

$$\text{LCM}(p(x), q(x)).$$

The following lemma is the Lemma 5 in [2]. We omit the proof.

Lemma 6. Let \{a^i\}, \{b^k\} \in (W^{(i)})^o for $j, k \in \mathbb{Z}$, where $a, b \in F^\times$ such that $a^i \neq b^j$. Then \{\{a^i\}, \{b^j\}\} satisfies $(x - a)^2(x - b)^2$.

As a consequence of Lemma 6, we have the following corollary. The proof is similar to Theorem 4.

Corollary 7. Let F be an algebraically closed field. Let $f, g \in (W^{(i)})^o$ and f with the characteristic polynomial of $p(x) = (x - a_1) \cdots (x - c_1)(x - d_1) \cdots (x - b_1^{(1)}) \cdots (x - b_s^{(1)})$, g with the characteristic polynomial of $q(x) = (x - a_1) \cdots (x - a_k)(x - d_1) \cdots (x - d_m)(x - b_1^{(2)}) \cdots (x - b_t^{(2)})$. If $a_1, \ldots, a_k, c_1, \ldots, c_n, d_1, \ldots, d_m, b_1^{(1)}, \ldots, b_s^{(1)}, b_1^{(2)}, \ldots, b_t^{(2)}$ are distinct in F^\times, they satisfy $a_\alpha^i = c_\beta^i = d_\gamma^i$ for $1 \leq \alpha \leq k, 1 \leq \beta \leq n, 1 \leq \gamma \leq m$ and $a_\alpha^i \neq (b_\eta^{(1)})^i, b_\eta^{(1)} \neq (b_\lambda^{(2)})^i$ for $1 \leq \alpha \leq k, 1 \leq \eta \leq s, 1 \leq \lambda \leq t$, then $[f, g]$ satisfies

1. $(x - a_1) \cdots (x - a_k)(x - c_1) \cdots (x - c_n)(x - d_1) \cdots (x - d_m)$ for $s = t = 0$,
2. $(x - a_1)^2 \cdots (x - a_k)^2(x - c_1)^2 \cdots (x - c_n)^2(x - d_1)^2 \cdots (x - d_m)^2(x - b_1^{(1)})^2 \cdots (x - b_t^{(2)})^2$ for $s \neq 0, t = 0$ (resp. $s = 0, t \neq 0$),
3. $(x - a_1)^2 \cdots (x - a_k)^2(x - c_1)^2 \cdots (x - c_n)^2(x - b_1^{(1)})^2 \cdots (x - b_t^{(2)})^2(x - d_1)^2 \cdots (x - d_m)^2(x - b_1^{(2)})^2(x - b_t^{(2)})^2$ for $s \neq 0, t \neq 0$.

We close this paper with the following examples.

Example 8. Denote the linearly recursive sequences $f = \{1\}$ be the sequence $(\cdots, 1, 1, 1, 1, \cdots)$, $g = \{-1\}$ be the sequence $(\cdots, -1, 1, -1, 1, \cdots)$, where the 0-th term is 1 and $h = \{2\}$ be the sequence $(\cdots, \frac{1}{2}, 1, 2, 4, 8, \cdots)$, where the 0-th term is 1. Note that the characteric polynomial of f (resp. g and $f + h$) is $x - 1$ (resp. $x + 1$ and $(x - 1)(x - 2)$).

For $i = 2$, $[f, g] \in (W^{(2)})^o$ is $(\cdots, 0, 4, 0, 4, 0, 4, \cdots)$. It satisfies $x^2 - 1$. Obviously, $x^2 - 1$ is also the characteristic polynomial of $[f, g] \in (W^{(2)})^o$. $[f +
A NOTE ON THE TAFT’S PROBLEM

49

$h, g \in (W^{(2)})^o$ is $[f, g]_p = (-3p - 2)(-1)^p + (-3p + 8)2^p + 2$. It satisfies
$x^5 - 3x^4 - x^3 + 7x^2 - 4 = (x-1)(x+1)^2(x-2)^2$. Obviously, $x^5 - 3x^4 - x^3 + 7x^2 - 4$
is also the characteristic polynomial of $[f, g] \in (W^{(2)})^o$.

However, for $i = -1$, $[f, g] \in (W^{(-1)})^o$ is $[f, g]_p = (-2p - 1)((-1)^p + 1)$. Thus, $x^4 - 2x^2 + 1 = (x^2 - 1)^2$ is the characteristic polynomial of $[f, g] \in (W^{(-1)})^o$.

$[f + h, g] \in (W^{(-1)})^o$ is $[f, g]_p = (-2p - 1) + (-7p - 2)(-1)^p + (-\frac{3}{2}p - \frac{1}{2})2^p$. Thus, $x^6 - 4x^5 + 2x^4 + 8x^3 - 7x^2 - 4x + 4 = (x^2 - 1)^2(x - 2)^2$ is the characteristic polynomial of $[f + h, g] \in (W^{(-1)})^o$.

Example 9. Let the linearly recursive sequence $f = (f_i)_{i \in \mathbb{Z}}$ be $f_i = -2f_{i-1} - 4f_{i-2}$, and $f_0 = 1, g_1 = 1$. The characteristic polynomial of f is $x^2 + 2x + 4$. Denote the linearly recursive sequences $g = \{2\}$ be the sequence $(\cdots, \frac{1}{2}, 1, 2, 4, 8, \cdots)$, where the 0-th term is 1 and $h = \{1\}$ be the sequence $(\cdots, 1, 1, 1, 1, \cdots)$. The characteristic polynomial of g (resp. $f + h$ and $g+h$) is $x - 2$ (resp. $x^3 + x^2 + 2x - 4 = (x^2 + 2x + 4)(x - 1)$ and $(x - 1)(x - 2)$). Note that $(x^2 + 2x + 4)(x - 3)$. So $f_{p+3} = 8f_p$ for $p \in \mathbb{Z}$.

For $i = 3$, $[f, g] \in (W^{(3)})^o$ is $[f, g]_p = 24f_p - 24 \cdot 2^p$. Thus, the characteristic polynomial of $[f, g] \in (W^{(3)})^o$ is $x^3 - 8$. $[f + h, g] \in (W^{(3)})^o$ is $[f, g]_p = (7p + 3) + (7p - 32x - 32 = (x - 1)^2(x - 2)(x^2 + 2x + 4)^2$. Since $[f + h, g + h] = [f + h, g] + [f, g + h]$, the characteristic polynomial of $[f + h, g + h] \in (W^{(3)})^o$ is $x^8 - 2x^7 + x^6 - 16x^5 + 32x^4 - 16x^3 + 64x^2 - 128x + 64 = (x - 1)^2(x^3 - 8)^2$.

However, for $i = 2$, $[f, g] \in (W^{(2)})^o$ is $[f, g]_p = (10p - 8)2^p + (-p + 2)4f_p + 4p + 2). Thus, the characteristic polynomial of $[f, g] \in (W^{(2)})^o$ is $x^6 - 16x^3 + 64 = (x^2 - 8)^2$. $[f + h, g] \in (W^{(2)})^o$ is $[f, g]_p = (5p + 2) + (-3p - 16)2p + 4f_p + (p + 2)f_{p+2}$. $[f + h, g + h] \in (W^{(2)})^o$ is $[f, g]_p = (7p - 2) + (10p - 8)2p + 5pf_p + (-2p + 4)f_{p+2}$. $[f + h, g + h] = [f, g + h] + [f, g + h] \in (W^{(2)})^o$. Thus, the characteristic polynomial of $[f + h, g]$, $[f, g + h]$ and $[f + h, g + h] \in (W^{(-1)})^o$ are the same. It is $x^8 - 2x^7 + x^6 - 16x^5 + 32x^4 - 16x^3 + 64x^2 - 128x + 64 = (x - 1)^2(x^3 - 8)^2$.

Acknowledgements

This paper was finished during the first author’s visit to the Department of Mathematics at Rutgers University and was supported by a research fellowship from the China Scholarship Council. He thanks these two institutions and Prof. E. J. Taft for their hospitality and support. The work was supported by the Nature Science Foundation of China (Grant No. 19901009), the Excel-
lent Young Teachers Program of M0E, P.R. China, the “Qian Bai Shi” talent young foundation of Guangdong Province and Nature Science Foundation of Guangdong Province, China (Grant No. 970472, 000463).

References

