IJPAM: Volume 6, No. 2 (2003)


M $^{\text{\b a}}$ Isabel García-Planas
Department of Applied Mathematics
Technical University of Catalunya
C. Minería 1, Esc C, $1^{\mbox{\b o}}$- $3^{\mbox{\b a}}$
08038 Barcelona, SPAIN
e-mail: maria.isabel.garcia@upc.es

Abstract.Given a $(\ell +1)$-ple of matrices $(A_{\ell -1},\hdots ,A_{0},B)$ representing $\ell$-order time-invariant linear systems, $x^{(\ell )}=A_{\ell -1}x^{(\ell
-1)}+\hdots +A_{0}x^{(0)}+Bu$, we analyze conditions in such a way that changing the control $u$ by $u_{1}=u-F_{\ell}x^{(\ell)}- \ldots
F_{0}x^{(0)}$ the system obtained has a stable solution.

Received: March 24, 2003

AMS Subject Classification: 15A21 93B52

Key Words and Phrases: high-order linear systems, linearization, feedback, controllability

Source: International Journal of Pure and Applied Mathematics
ISSN: 1311-8080
Year: 2003
Volume: 6
Issue: 2