YANG-MILLS CONNECTIONS IN
HOMOGENEOUS PRINCIPAL FIBRE BUNDLES

Joon-Sik Park\textsuperscript{1*}, Hajime Urakawa2

1Department of Mathematics
Pusan University of Foreign Studies
55-1, Uam-Dong, Nam-Gu, Pusan, 608-738, KOREA
e-mail: iohpark@taejo.pufs.ac.kr

2Graduate School of Information Sciences
Tohoku University
Aoba 09, Aoba-ku, Sendai 980-8579, JAPAN
e-mail: urakawa@math.is.tohoku.ac.jp

\textbf{Abstract:} Let K be a compact connected Lie-group of automorphisms of a principal fibre bundle $P(M,G)$ which acts fibre-transitively on P. We obtain a necessary and sufficient condition for a K-invariant connection in $P(M,G)$ to be a Yang-Mills connection, and give such examples.

\textbf{AMS Subject Classification:} 53C07, 53C30, 58E11

\textbf{Key Words:} homogeneous principal fibre bundles, invariant connections, Yang-Mills connections

1. Introduction

Yang-Mills connections in a G-principal fibre bundle P over a compact Riemannian manifold M are the extrema of the Yang-Mills functional. In case of $\dim(M) = 4$, (anti-) self-dual connections are always Yang-Mills connections and the theory of (anti-) self-dual connections has been greatly developed. Nevertheless, to solve the Yang-Mills equation, itself, is still a difficult problem because of its non-linearity.

In this paper, for a compact connected Lie group K of automorphisms of a
principal fibre bundle $P(M, G)$ which acts fibre-transitively on P, we obtain a necessary and sufficient condition for a K-invariant connection in $P(M, G)$ to be a Yang-Mills connection (cf. Theorem 4.1). Moreover as examples, we treat the case $K = SU(3)$ and $G = SU(2)$, and the base manifold $M = CP^2$ (cf. Proposition 5.2 and Theorem 5.4).

2. Yang-Mills Connections

For a compact Lie group G with the Lie algebra g, let $P(M, G, \pi)$ be a principal G-bundle over a compact Riemannian manifold (M, h). A g-valued 1-form ω on P is called a connection (form) if it satisfies

$$\omega(A^*) = A, \quad A \in g,$$

where A^* is a vector field on P given by $A^*_u = d(u \cdot \exp(tA))/dt|_{t=0}$, $u \in P$, and the pull back $R_a^*\omega$ of ω by the action R_a, $a \in G$, of G satisfies

$$R_a^*\omega = \text{Ad}(a^{-1})\omega, \quad a \in G.$$

We denote by \mathcal{C} the set of all connections on P. Let $\{U_\alpha\}_{\alpha \in \mathcal{F}}$ be an open covering of M with a family of isomorphisms $\psi_\alpha: \pi^{-1}(U_\alpha) \to U_\alpha \times G$ and the corresponding family of transition functions $\psi_{\alpha\beta}: U_\alpha \cap U_\beta \to G$, $(\alpha, \beta \in \mathcal{F})$. For each $\alpha(\in \mathcal{F})$, let $\sigma_\alpha: U_\alpha \to P$ be the cross section on U_α defined by $\sigma_\alpha(x) = \psi_\alpha^{-1}(x, 1_G)$, $x \in U_\alpha$, where 1_G is the identity of G. For each $\alpha(\in \mathcal{F})$, a g-valued 1-form ω_α on U_α is defined by $\omega_\alpha := \sigma_\alpha^*\omega$. Then on each non-empty $U_\alpha \cap U_\beta$, $(\alpha, \beta \in \mathcal{F})$,

$$\omega = (L_{\psi_{\alpha\beta}})_*d\psi_{\alpha\beta} + \text{Ad}(\psi_{\alpha\beta}^*)\omega_\alpha. \quad (2.3)$$

Then, on $\pi^{-1}(U_\alpha)$, $(\alpha \in \mathcal{F})$,

$$\omega = \text{Ad}(s_{\alpha}^{-1})\pi^*\omega_\alpha + (L_{s_{\alpha}^{-1}})_*ds_{\alpha} \quad (\omega \in \mathcal{C}), \quad (2.4)$$

where s_α is the G-coordinate of the isomorphism $\psi_\alpha: \pi^{-1}(U_\alpha) \to U_\alpha \times G$, $(\alpha \in \mathcal{F})$. The g-valued 2-form Ω^ω on P, which is called the curvature form, is defined

$$\Omega^\omega = d\omega + (1/2)[\omega, \omega]. \quad (2.5)$$

On $\pi^{-1}(U_\alpha)$, $(\alpha \in \mathcal{F})$,

$$\Omega^\omega = \text{Ad}(s_{\alpha}^{-1})\pi^*\Omega_\alpha, \quad (2.6).$$
where $\Omega = d\omega + (1/2)[\omega, \omega]$. Fix an $\text{Ad}(G)$-invariant inner product \langle , \rangle on g. Since the inner product $\langle \Omega^\alpha, \Omega^\alpha \rangle(u)$ depends only on the point $x = \pi(u)$ because of (2.2) and (2.6), the following functional called the Yang-Mills functional, is well defined:

$$\text{YM}(\omega) = (1/2) \int_M \langle \Omega^\alpha, \Omega^\alpha \rangle dv_h,$$

$$\text{YM}(\omega_\alpha) = (1/2) \int_M \langle \Omega_\alpha, \Omega_\alpha \rangle dv_h,$$ \hspace{1cm} (2.7)

where dv_h is the volume element of (M,h). A connection ω in C is a Yang-Mills connection if it is a critical point of the Yang-Mills functional YM. The following theorem is well known (cf. [2,4]):

Theorem 2.1. A connection ω in C is a Yang-Mills connection if and only if

$$\sum_{j=1}^m \left\{ (\nabla_{e_j} \Omega)_{\alpha}(e_j, e_i) + [\omega(\alpha), e_j, e_i] \right\} = 0 \quad (i = 1, 2, \cdots, m),$$ \hspace{1cm} (2.8)

where ∇ is the Levi-Civita connection of (M,h) and $\{e_i | i = 1, 2, \cdots, m\}$ is a local orthonormal frame field on (M,h).

3. Invariant Connections in $P = K \times_{(\lambda, H)} G$

The situation of this paper is the following. Let K be a compact connected Lie group acting on a principal fibre bundle $P(M,G,\pi)$ as a group of automorphisms which acts fibre-transitively on P, i.e., (i) each $k(\in K)$ is a diffeomorphism such that $k(ua) = k(u)a$ $(u \in P, a \in G)$, and (ii) for any two fibres of P, there is an element of K which maps one fibre into the other. Every element k of K induces a transformation of M in a natural manner because of (i), which is denoted by τ_k. For an arbitrary fixed point u_0 in P, with the projection $\pi(u_0) = x_0$, let H be the isotropy subgroup of K at x_0, i.e., $H := \{ k \in K | \tau_kx_0 = x_0 \}$. Then $K/H = M$ and $x_0 = \{H\}$. Moreover $P = K \times_{(\lambda, H)} G$. In fact, the identification Ψ of P with $K \times_{(\lambda, H)} G$ is given by

$$\Psi(u) := [(k,a)] \quad (u = k(u_0)a \in P, \ k \in K, \ a \in G).$$ \hspace{1cm} (3.1)

This correspondence (3.1) is well defined, then $u_0 = [(1_K, 1_G)]$ and $\pi(u) = \pi[(k,a)] = \pi_0(k)$, $(u = k(u_0)a)$. In this paper, π_0 is the natural projection
of K onto K/H. Let λ be the holonomy representation of H into G, i.e., $h(u_0) = u_0\lambda(h)$ ($h \in H$). Now let us recall a work of H.C. Wang (cf. [7]) in which he considered the K-invariant connections on P. A connection $\omega \in \mathcal{C}$ is K-invariant if the full back $k^*\omega$, ($h \in H$), coincides with ω. We denote by \mathcal{C}_K the set of all K-invariant connections of the principal fibre bundle $P(M,G,\pi)$. For every $\omega \in \mathcal{C}_K$, a linear map \wedge of k into g is defined by $\wedge(X) := \omega_{u_0}(\tilde{X})$, $X \in k$, where k is the Lie algebra of K and \tilde{X} is a vector field on P defined by $\mathcal{X}_u := d(\exp tX)(u)/dt|_{t=0}$, ($u \in P$). (3.2)

Then, (cf. [7]),

$$\begin{align*}
\wedge(X) &= \lambda(X), \quad (X \in h), \quad \text{and} \\
\wedge(\text{Ad}(h)X) &= \text{Ad}(\lambda(h))(\wedge(X)), \quad (h \in H, X \in k).
\end{align*}$$

(3.3)

Since K is compact, the Lie algebra k of K can be decomposed into a direct sum of the Lie algebra h of H and an $\text{Ad}(H)$-invariant subspace m as vector spaces, that is, $k = h \oplus m$ and $\text{Ad}(H)m \subset m$. Then we have the following theorem.

Theorem 3.1. (cf. [7]) On the G-principal fibre bundle $P = K \times_{(\lambda,H)} G$ over M, the correspondence above $\omega \rightarrow \wedge$ gives a bijection between \mathcal{C}_K and the set of all linear maps \wedge satisfying

$$\wedge(m)(\text{Ad}(h)X) = \text{Ad}(\lambda(h))(\wedge(m)(X)) \quad (h \in H, X \in m),$$

(3.4)

and the curvature form Ω of the K-invariant connection defined by $\wedge(m)$ satisfies the following

$$2\Omega_{u_0}(\tilde{X},\tilde{Y}) = [\wedge(m)(X),\wedge(m)(Y)] - \wedge(m)([X,Y]_m) - \lambda([X,Y]_h),$$

(3.5)

where $\wedge(m)$ is the restriction of \wedge to m, and $[X,Y]_m$ (resp. $[X,Y]_h$) denotes the m-component (resp. h-component) of $[X,Y] \in k$.

4. Main Results

We preserve the notations as in Section 2 and Section 3. For the H-principal fibre bundle $K(K/H,H,\pi_0)$, the following lemma (cf. [3, Lemma 4.1, p. 123]) is well known.

Lemma 4.1. There is a neighbourhood V of 0 in the vector space m which is mapped diffeomorphically under $\exp|_m$ and such that π_0 maps $N := \exp(V)$ diffeomorphically onto a neighbourhood U of the point $\{H\}$ in K/H.

Let σ_0 be a cross section of the neighbourhood U of $\{H\}$ in Lemma 4.1 into $\pi^{-1}(U) (\subset K)$ which is defined by $\sigma_0(\pi_0(\exp X)) = \exp(X)$ $(X \in V)$. For each $u = [(k,a)] \in P, \pi(u) = \pi_0(k)$. For convenience in this paper, we denote by U_α the neighbourhood U of $\{H\}$ $(\in M)$ in Lemma 4.1. Using the mapping σ_0, we can define a cross section σ_α of the neighborhood U_α into $\pi^{-1}(U_\alpha)(\subset P)$, which is defined by $\sigma_\alpha(\pi_0(\exp X)) := \exp X(u_0), (X \in V)$. Evidently, $\sigma_\alpha(x_0) = u_0$.

For the calculus, we define a vector field $X^*, X \in m = T_{\{H\}}M$, on the neighborhood U_α of $\{H\}$ in K/H by

$$X^*_{xH} := (\tau_x)_\ast X \in T_{xH}(M), \quad x \in \exp(V) = N. \quad (4.1)$$

Let \langle , \rangle be an inner product which is $\Ad(H)$-invariant on m. This inner product \langle , \rangle determines a K-invariant Riemannian metric $h_{\langle , \rangle}$ on K/H. Let $\{X_i\}_{i=1}^m$ be an orthonormal basis on (m, \langle , \rangle). Then $\{X_i^*\}_{i=1}^m$ is an orthonormal frame field on the neighborhood U_α of $\{H\}$ in $(K/H, h_{\langle , \rangle})$. Let $\{\theta_i^*\}_{j=1}^m$ be a system of 1-forms on U_α which is dual to $\{X_i^*\}_{i=1}^m$. Then, the Levi-Civita connection ∇ of $(K/H,h_{\langle , \rangle})$ is given by

$$\nabla_X Y^* = (1/2)[X,Y]m + U(X,Y) \quad (X,Y \in m), \quad (4.2)$$

where $U(X,Y)$ is determined by

$$2 \langle U(X,Y), Z \rangle = \langle [Z,X]m, Y \rangle + \langle X, [Z,Y]m \rangle = \langle X, Y, Z \rangle. \quad (4.3)$$

For each $u \in \pi^{-1}(U_\alpha)$, there exist a unique pair $(X, a) \in (V \times G) \subset (m \times G)$ such that $u = [(\exp X, a)]$. A diffeomorphism ψ_α of $\pi^{-1}(U_\alpha)$ onto $U_\alpha \times G$ is defined by

$$\psi_\alpha(u) = (\pi(u), a) = (\pi_0(\exp X), a), \quad (4.4)$$

for $u = \exp X(u_0) \in [(\exp X, a)], (X \in V$ and $a \in G)$. Then $\sigma_\alpha(\pi_0(\exp X)) = \psi_\alpha^{-1}(\pi_0(\exp X), 1_G) = (\exp X)(u_0), (X \in V)$. So, $s_\alpha(\sigma_\alpha(\tau_{\exp X}(\{H\}))) = 1_G, (X \in V)$. By virtue of (2.6), we have on U_α

$$\Omega^\omega(\sigma_\alpha(X_i^*), \sigma_\alpha(X_j^*)) = \Omega(\alpha)(X_i^*, X_j^*). \quad (4.5)$$

Since $\sigma_\alpha(\pi_0(\exp tX_i)) = \exp(tX_i)(u_0)$ for sufficiently small t, $\widetilde{X}_i(u_0) = \sigma_\alpha(X_i^*_{\{H\}})$ for each i. Hence, by (2.6) we get on U_α

$$(\sigma_\alpha^\ast \omega)(X_i^*_{\{H\}}) = \wedge m(X_i),$$

$$\Omega^\omega(\widetilde{X}_i, \widetilde{X}_j)(u_0) = \Omega(\alpha)(X_i^*, X_j^*)(x_0). \quad (4.6)$$
From now on, we use the following notations:

\{X_i\}_i: an orthonormal basis of \((\mathfrak{m}, \langle \cdot, \cdot \rangle)\), \{Y_a\}_a: a basis of \(\mathfrak{h}\)

\{E_\alpha\}_\alpha: an orthonormal basis of the Lie algebra \(\mathfrak{g}\) of the structure group \(G\) with respect to an \(\text{Ad}(G)\)-invariant inner product \(\langle \cdot, \cdot \rangle\),

\([X_i, X_j]_\mathfrak{m} =: \sum_k C_{ij}^k X_k, \quad [X_i, X_j]_\mathfrak{h} =: \sum_b C_{ij}^b Y_b,\)

\(d\lambda(Y_a) =: \lambda(Y_a) =: \sum_\beta \lambda_\alpha^\beta E_\beta, \quad [E_\alpha, E_\beta] =: \sum_\gamma G_{\alpha\beta}^\gamma E_\gamma,\)

\(U(X_i, X_j) =: \sum_k U_{ij}^k X_k, \quad \wedge \mathfrak{m} (X_j) =: \sum_\beta \wedge_j^\beta E_\beta,\)

\(\Omega_\alpha := \sum_{i,j,\beta} \Omega_{ij}^\beta (\theta^i \wedge \theta^j) \otimes E_\beta, \quad \Omega_\alpha(X_i^*, X_j^*) := \Omega_{ij}^\alpha \text{ on } U_\alpha,\)

\((\nabla X_i^*(H) \Omega_\alpha)(X_j^*, X_j^*) =: \nabla_k \Omega_{ji}^\alpha \text{ on } U_\alpha.\)

By (4.3), we get

\[U_{ij}^k = (1/2)(C_{ki}^j + C_{kj}^i). \]

(4.7)

We obtain by help of (4.2) and (4.7)

\[
\begin{align*}
(\nabla X_i^* X_j^*) &= (1/2) \sum_k (C_{ki}^j + C_{kj}^i + C_{ij}^k) X_k^*, \\
(\nabla X_i^* \theta^j) &= (-1/2) \sum_k (C_{ji}^k + C_{jk}^i + C_{ik}^j) \theta^k.
\end{align*}
\]

(4.8)

Using (3.5) and (4.6), we obtain

\[\Omega_{ij}^\alpha = (1/2)(\sum_\beta \wedge_i^\beta \wedge_j^\gamma G_{\beta \gamma}^\alpha - \sum_k C_{ij}^k \wedge_k^\alpha - \sum_\alpha C_{ij}^\alpha \lambda_\alpha^\alpha). \]

(4.9)

By virtue of (4.6) and (4.8), we get

\[\sum_j \nabla_j \Omega_{ji} = \sum_{j,k,\alpha} \{\Omega_{ik}^\alpha C_{kj}^j + (1/2)\Omega_{kj}^\alpha (C_{ki}^j + C_{kj}^i + C_{ij}^k)\} E_\alpha, \]

(4.10)

\[\sum_j [\wedge \mathfrak{m}(X_j), \Omega_{ji}] = (1/2) \sum_{j,\alpha,\beta,\delta} \wedge_j^\beta (\sum_{\gamma,\mu} \wedge_j^\gamma \wedge_i^\mu G_{\gamma \mu}^\delta - \sum_k C_{ji}^k \wedge_k^\delta - \sum_\alpha C_{ji}^\alpha \lambda_\alpha^\delta) G_{\beta \delta}^\alpha E_\alpha. \]

(4.11)
Thus, by (4.10) and (4.11) we obtain the following theorem.

Theorem 4.1. Let K be a compact connected Liegroup of automorphisms of $P(M,G)$ which acts fibre-transitively on P. Then a K-invariant connection in the principal fibre bundle $P(M,G)$ is a Yang-Mills connection if and only if

$$
\sum_{k,j} \{2\Omega_{ik}^\alpha C_{kj}^\beta + \Omega_{kj}^\alpha (C_{kj}^i + C_{ki}^j + C_{ji}^k)\} + \sum_{j,\beta,\delta} \wedge_j^\beta G_{\beta\delta}^\alpha \\
\times \left(\sum_{\gamma,\mu} \wedge_j^\gamma \wedge_i^\mu G_{\gamma\mu}^\delta - \sum_k C_{ji}^k \wedge_k^\delta - \sum_a C_{ji}^a \lambda_a^\delta \right) = 0. \quad (4.12)
$$

Corollary 4.2. Assume the base manifold $(M,h<>,>)$ in the principal fibre bundle $P(M,G)$ is symmetric. Then a K-invariant connection in the bundle $P(M,G)$ is a Yang-Mills connection if and only if

$$
\sum_{j,\beta,\delta} \wedge_j^\beta G_{\beta\delta}^\alpha \left(\sum_{\gamma,\mu} \wedge_j^\gamma \wedge_i^\mu G_{\gamma\mu}^\delta - \sum_a C_{ji}^a \lambda_a^\delta \right) = 0. \quad (4.13)
$$

5. Examples

We consider the case when $K = SU(3), H = S(U(1) \times U(2))$ and $G = SU(2)$. Note that $U(1) \times SU(2)$ is a double covering of $U(2)$ and $U(2)$ is isomorphic with $S(U(1) \times SU(2))$ by group homomorphisms

$$
U(1) \times SU(2) \longrightarrow U(2) \longrightarrow S(U(1) \times U(2)),
$$

which are given by

$$(e^{i\theta}, A) \text{ or } (e^{i(\theta+\pi)}, -A) \longmapsto e^{i\theta} A =: B \longmapsto \begin{pmatrix} \det(B^{-1}) & 0 \\ 0 & B \end{pmatrix}.\$$

If l is an even integer, a group homomorphism λ of $S(U(1) \times U(2))$ into $SU(2)$ via $e^{i\theta} A \longmapsto \text{diag}(e^{il\theta}, e^{-il\theta})$, $(e^{i\theta} \in U(1), \ A \in SU(2))$, is well defined.

Let E_{ij} denote a square matrix of order 3 with the (i,j)-entry being 1, and all the other entries being 0. Then we put:

$$
X_1 := (1/\sqrt{12})(E_{12} - E_{21}), \quad X_2 := (\sqrt{-1}/\sqrt{12})(E_{12} + E_{21}),
$$
$$
X_3 := (1/\sqrt{12})(E_{13} - E_{31}), \quad X_4 := (\sqrt{-1}/\sqrt{12})(E_{13} + E_{31}),
$$
$$
Y_5 := (1/\sqrt{12})(E_{23} - E_{32}), \quad Y_6 := (\sqrt{-1}/\sqrt{12})(E_{23} + E_{32}),
$$
Y_7 := (\sqrt{-1}/\sqrt{12}) \operatorname{diag}(0,1,-1), \quad Y_8 := (\sqrt{-1}/6) \operatorname{diag}(-2,1,1).

Then \{Y_5, Y_6, Y_7, Y_8\}_R = \mathfrak{h}. Let B be the Killing form of \mathfrak{su}(n), i.e.,
B(X,Y) = \operatorname{Trace}(\text{ad}(X)\text{ad}(Y)) = 2n\operatorname{Trace}(XY) \ (X,Y \in \mathfrak{su}(n)).
We define an inner product \langle , \rangle on \mathfrak{su}(n) by
\[\langle X,Y \rangle = -B(X,Y) = -2n \ \operatorname{Trace}(XY) \ (X,Y \in \mathfrak{su}(n)). \quad (5.1) \]

We put \{X_1, X_2, X_3, X_4\}_R =: \mathfrak{m}, and then \{\mathfrak{h}, \mathfrak{m}\} \subset \mathfrak{m}. Moreover, \{X_i\}_{i=1}^4 is an orthonormal basis of \langle \mathfrak{m}, \langle , \rangle \rangle.

Similarly, we put \begin{align*}
E_1 &:= (1/\sqrt{8})(E_{12} - E_{21}), \quad E_2 := (\sqrt{-1}/\sqrt{8})(E_{12} + E_{21}), \\
E_3 &:= (\sqrt{-1}/\sqrt{8})\operatorname{diag}(1,-1) \text{ in } \mathfrak{su}(2). \quad \text{Then, } \{E_1, E_2, E_3\} \text{ is an orthonormal basis of } \mathfrak{su}(2) \text{ with respect to the } \operatorname{Ad}(\mathfrak{su}(2))-\text{invariant inner product } \langle , \rangle \text{ which is induced by the Killing form } B \text{ on } \mathfrak{su}(2).
\end{align*}

By straightforward computations, we have:
\begin{align*}
C_{12}^7 &= (-\sqrt{12})^{-1}, \quad C_{12}^8 = (-1/2), \quad C_{13}^5 = (-\sqrt{12})^{-1}, \\
C_{14}^6 &= (-\sqrt{12})^{-1}, C_{23}^6 = (\sqrt{12})^{-1}, \quad C_{24}^5 = (-\sqrt{12})^{-1}, \\
C_{34}^7 &= (\sqrt{12})^{-1}, \quad C_{34}^8 = (-1/2), \quad \text{and the others are zero;} \\
G_{12}^3 &= G_{23}^1 = G_{31}^2 = (1/\sqrt{2}), \quad \text{and the others are zero;} \\
\lambda^3 &= (\sqrt{2}/3) \quad \text{and the others are zero.} \quad (5.2)
\end{align*}

Using Theorem 4.1 and Corollary 4.2, we have the following result.

Proposition 5.1. Let \(P \) be the principal fibre bundle
\[SU(3) \times_{(\lambda, \operatorname{SU}(U(1) \times U(2)))} SU(2) =: P_\lambda \]
over the Riemannian manifold \((CP^2, g_{< , >})\). Then, a \(SU(3) \)-invariant connection \(w \) in \(P_\lambda \) is a Yang-Mills connection if and only if
\begin{align*}
3 \sum_{j \not= k} & \{ \wedge k^2(\wedge j^1 \wedge j^2) + \wedge k^3(\wedge j^1 \wedge j^3) - \wedge k^1(\wedge j^2 + \wedge j^3)^2 \} \\
& = \begin{cases} \
\ell \wedge 2^2 & \text{if } k = 1, \\
-\ell \wedge 1^2 & \text{if } k = 2,
\end{cases}
\end{align*}
\begin{align*}
3 \sum_{j \not= k} & \{ \wedge k^1(\wedge j^1 \wedge j^2) + \wedge k^3(\wedge j^2 \wedge j^3) - \wedge k^2(\wedge j^1 + \wedge j^3)^2 \} \\
& = \begin{cases} \
-\ell \wedge 2^1 & \text{if } k = 1, \\
\ell \wedge 1^1 & \text{if } k = 2,
\end{cases}
\end{align*}
and

\[
\sum_{i(j \neq k)} \left[\wedge_k^1(\wedge_j^1 \wedge_j^3) + \wedge_k^2(\wedge_j^2 \wedge_j^3) - \wedge_k^3\{(\wedge_j^1)^2 + (\wedge_j^2)^2\}\right] = 0,
\]

for each \(k (k = 1, 2, 3, 4) \). (5.3)

The Hodge star operator \(* \) satisfies \(*^2 = id \). In case of \(\text{dim}(M) = 4 \), if \(*\Omega^\nu = \Omega^\nu \) (resp. \(*\Omega^\nu = -\Omega^\nu \)), \(w \) is self-dual (resp. anti-self-dual), which is always a Yang-Mills connection.

By help of (4.9) and (5.2), we have:

\[
\begin{align*}
\Omega_{12}^1 &= c(\wedge_1^1 \wedge_2^3 - \wedge_1^3 \wedge_2^1), \quad \Omega_{12}^2 = c(\wedge_1^3 \wedge_2^1 - \wedge_1^1 \wedge_2^3), \\
\Omega_{13}^1 &= c(\wedge_1^2 \wedge_3^3 - \wedge_1^3 \wedge_3^2), \quad \Omega_{13}^2 = c(\wedge_1^3 \wedge_3^1 - \wedge_1^1 \wedge_3^3), \\
\Omega_{14}^1 &= c(\wedge_1^2 \wedge_4^3 - \wedge_1^3 \wedge_4^2), \quad \Omega_{14}^2 = c(\wedge_1^3 \wedge_4^1 - \wedge_1^1 \wedge_4^3), \\
\Omega_{23}^1 &= c(\wedge_2^1 \wedge_3^3 - \wedge_2^3 \wedge_3^1), \quad \Omega_{23}^2 = c(\wedge_2^3 \wedge_3^1 - \wedge_2^1 \wedge_3^3), \\
\Omega_{24}^1 &= c(\wedge_2^1 \wedge_4^3 - \wedge_2^3 \wedge_4^1), \quad \Omega_{24}^2 = c(\wedge_2^3 \wedge_4^1 - \wedge_2^1 \wedge_4^3), \\
\Omega_{34}^1 &= c(\wedge_3^1 \wedge_4^2 - \wedge_3^2 \wedge_4^1), \quad \Omega_{34}^2 = c(\wedge_3^2 \wedge_4^1 - \wedge_3^1 \wedge_4^3), \\
\Omega_{34}^3 &= c\{\wedge_3^1 \wedge_4^2 - \wedge_3^2 \wedge_4^1 + (\ell/3)\},
\end{align*}
\]

where \(c := (2\sqrt{2})^{-1} \). We obtain from (5.4) the following proposition.

Proposition 5.2. In the principal fibre bundle

\[
SU(3) \times_{\langle\lambda, S(U(1)) \times U(2)\rangle} SU(2),
\]

over \(CP^2 \), \(w \) is self-dual (resp. anti-self-dual) if and only if

\[
\begin{align*}
\wedge_1^2 \wedge_2^3 - \wedge_1^3 \wedge_2^2 &= \wedge_3^2 \wedge_4^3 - \wedge_3^3 \wedge_4^2 \quad (\text{resp. } \wedge_3^3 \wedge_4^2 - \wedge_3^2 \wedge_4^3), \\
\wedge_1^3 \wedge_2^1 - \wedge_1^2 \wedge_3^2 &= \wedge_3^3 \wedge_4^1 - \wedge_3^1 \wedge_4^3 \quad (\text{resp. } \wedge_3^1 \wedge_4^3 - \wedge_3^3 \wedge_4^1), \\
\wedge_1^1 \wedge_2^2 - \wedge_1^2 \wedge_2^1 &= \wedge_3^1 \wedge_4^2 - \wedge_3^2 \wedge_4^1 \quad (\text{resp. } \wedge_3^2 \wedge_4^1 - \wedge_3^1 \wedge_4^2 - (2\ell)/3), \\
\wedge_1^1 \wedge_3^\alpha - \wedge_1^\beta \wedge_3^\alpha &= \wedge_4^\alpha \wedge_2^\beta - \wedge_4^\beta \wedge_2^\alpha \quad (\text{resp. } \wedge_4^\beta \wedge_2^\alpha - \wedge_4^\alpha \wedge_2^\beta), \\
\wedge_1^\alpha \wedge_4^\beta - \wedge_1^\beta \wedge_4^\alpha &= \wedge_2^\alpha \wedge_3^\beta - \wedge_2^\beta \wedge_3^\alpha \quad (\text{resp. } \wedge_2^\beta \wedge_3^\alpha - \wedge_2^\alpha \wedge_3^\beta),
\end{align*}
\]

(5.5)
where \(\alpha, \beta = 1, 2, 3, \) and \(\alpha \neq \beta. \)

By Proposition 5.2, it can be shown that if \((\wedge_{i}^{\alpha}) \) satisfies \(\wedge_{i}^{1} = \wedge_{i}^{2} = 0 \) for each \(i \) \((i = 1, 2, 3, 4), \) i.e., \(< \wedge m(X_{i}), E_{1} > = < \wedge m(X_{i}), E_{2} > = 0 \) for each \(i, \) the \(SU(3) \)-invariant connection \(w \) in \(P_{\lambda} \) corresponding to \((\wedge_{i}^{\alpha}) \) is self-dual. Since a self-dual (or anti-self-dual) connection \(\omega \) is a Yang-Mills connection, combining Proposition 5.1 and Proposition 5.2 we get the following result.

Proposition 5.3. For a \(SU(3) \)-invariant connection in the principal fibre bundle \(P_{\lambda} \) over \(CP^{2} \), the sufficient and necessary conditions to be a Yang-Mills connection are

\[
< \wedge m(X_{i}), E_{1} >= < \wedge m(X_{i}), E_{2} >= 0 \quad \text{for each} \quad i \ (i = 1, 2, 3, 4). \quad (5.6)
\]

By virtue of Proposition 5.1 and Proposition 5.3, we obtain the following theorem.

Theorem 5.4. Let \(P_{\lambda} \) be the principal fibre bundle \(K \times_{(\lambda,H)} G, \) \((K := SU(3), \ H := S(U(1) \times U(2)), \ G := SU(2)), \) over \((CP^{2}, g_{\langle , \rangle}) \). Then the sufficient and necessary conditions for a \(K \)-invariant connection \(\omega \) in \(P_{\lambda} \) to be a Yang-Mills connection are

\[
\sum_{j(j \neq k)} [\wedge_{k}^{2}(\wedge_{j}^{1}\wedge_{j}^{2}) + \wedge_{k}^{3}(\wedge_{j}^{1}\wedge_{j}^{3}) - \wedge_{k}^{1}\{(\wedge_{j}^{2})^{2} + (\wedge_{j}^{3})^{2}\}] \\
= \sum_{j(j \neq k)} [\wedge_{k}^{1}(\wedge_{j}^{1}\wedge_{j}^{2}) + \wedge_{k}^{3}(\wedge_{j}^{2}\wedge_{j}^{3}) - \wedge_{k}^{2}\{(\wedge_{j}^{1})^{2} + (\wedge_{j}^{3})^{2}\}] \\
= \sum_{j(j \neq k)} [\wedge_{k}^{1}(\wedge_{j}^{1}\wedge_{j}^{3}) + \wedge_{k}^{2}(\wedge_{j}^{2}\wedge_{j}^{3}) - \wedge_{k}^{3}\{(\wedge_{j}^{1})^{2} + (\wedge_{j}^{2})^{2}\}] \\
= 0, \quad (5.7)
\]

for each \(k \) \((k = 1, 2, 3, 4). \)

By Proposition 5.3, we derive the following corollary.

Corollary 5.5. Let \(\ell \) be a non-zero even integer. Then for each \(SU(3) \)-invariant connection \(\omega \) in \(P_{\lambda}, \) it is a Yang-Mills connection if and only if \(\omega \) is self-dual.

Acknowledgements

The first author’s research was supported by grant No. R05-2002-000590-0 from the Basic Research Program of the Korea Science and Engineering Foundation.
References

