NON-EXTENDIBILITY OF CERTAIN HOLOMORPHIC VECTOR BUNDLES ON INFINITE-DIMENSIONAL DOMAINS

E. Ballico

Department of Mathematics
University of Trento
380 50 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: As a sample we give the following result. Let V be a complex locally convex, Hausdorff and Baire topological vector space such that its dual V' is equipped with a Hausdorff and sequentially complete locally convex topology for which the natural pairing $V \times V' \to \mathbf{C}$ is continuous. Let H be any closed hyperplane of V'. Fix any $P \in V$. There is a holomorphic vector bundle E on $V \setminus \{P\}$ with fibers isomorphic to H which is not the restriction of a holomorphic vector bundle on V and such that for every open neighborhood Ω of P in V the holomorphic vector bundle $E \mid \Omega \cap U$ is not trivial.

AMS Subject Classification: 32K05, 32L05

Key Words: holomorphic vector bundle, infinite-dimensional complex manifold, Banach bundle

1. Introduction

As an appetizer we will give the following extension of a result of S. Dineen concerning the first cohomology group of analytic sheaves on pseudoconvex domains of complex topological vector spaces equipped with the finite open topology (see [4], Proposition 1).

Received: February 5, 2003 © 2004, Academic Publications Ltd.

106 E. Ballico

Theorem 1. Let U be a pseudoconvex open subset of a complex topological vector space equipped with the finite open topology and A a holomorphic vector bundle on U with fibers isomorphic to a Banach space. Then $H^1(U,A)=0$.

Now we describe a few non-extendibility results for holomorphic vector bundles.

Theorem 2. Let V be a complex locally convex, Hausdorff and Baire topological vector space such that its dual V' is equipped with a Hausdorff and sequentially complete locally convex topology for which the natural pairing $V \times V' \to \mathbf{C}$ is continuous. Let $U \subsetneq V$ be an open subset and $P \in \partial U$ such that U is C^2 at P and 2-concave at P, i.e. such that the following condition is satisfied:

(α) There is an open neighborhood M of P in V and a C^2 -function $f: M \to \mathbf{R}$ such that $M \cap U = \{Q \in M : f(Q) < 0\}$, $df(P) \neq 0$ and there is a two-dimensional complex vector space $N \subset V$ transversal to the real hyperplane $T_P(\partial(U))$ of V and such that the restriction to N of the Levi form of f at P is strictly definite negative.

Then there is a holomorphic vector bundle E on U with fibers isomomorphic to V' with the following property: there is no neighborhood Ω of P in V such that the holomorphic vector bundle $E|U\cap\Omega$ is the restriction of a holomorphic vector bundle on Ω .

For instance in Theorem 2 we may take as V any Banach space. As an immediate corollary we obtain the following result.

Corollary 1. Let V be a complex locally convex, Hausdorff and Baire topological vector space such that its dual V' is equipped with a Hausdorff and sequentially complete locally convex topology for which the natural pairing $V \times V' \to \mathbf{C}$ is continuous. Let H be any closed hyperplane of V'. Fix any $P \in V$. There is a holomorphic vector bundle E on $V \setminus \{P\}$ with fibers isomorphic to E which is not the restriction of a holomorphic vector bundle on E and such that for every open neighborhood E of E in E the holomorphic vector bundle E is not trivial.

Theorem 3. Let V be a complex locally convex and Hausdorff topological vector space, U an open subset of V and $P \in \partial(U)$ such that U is C^2 at P and 2-concave at P. Fix an integer $k \geq 2$ and assume the existence of holomorphic functions f_i , $1 \leq i \leq k$, on V such that $P \in Z$ and $Z \cap U = \emptyset$, where $Z := \{Q \in V : f_1(Q) = \cdots = f_k(Q) = 0\}$. Then there is a rank k-1

holomorphic vector bundle E on U with the following property: there is no neighborhood Ω of P in V such that the holomorphic vector bundle $E|U\cap\Omega$ is the restriction of a holomorphic vector bundle on Ω .

Proof of Theorem 1. The case $A \cong \mathcal{O}_U$ is just [4], Proposition 1. Since A is locally free, the tensor product with A is an exact functor in the category of \mathcal{O}_U -sheaves. Hence tensoring with A diagram (1) at p. 338, one can copy verbatim the proof of [4], pp. 339–339, if one knowns in advance the case in which U has finite-dimensional. If A has finite-rank, the case U finite-dimensional is true by Theorem B of Cartan-Serre. For the extension of this theorem in which A is an arbitrary Banach bundle, see [3], 3.5, or [1].

Proof of Theorem 2. Without losing generality we may assume P=0. Let $\mathcal{O}_{V,0}$ be the sheaf of germs of holomorphic functions on V vanishing at 0. The evaluation map induces a surjection $f:\mathcal{O}_V^{V'}\to\mathcal{I}_{V,0}$. Set $G:=\mathrm{Ker}(f)$, $F:=G|V\setminus\{0\}$ and E:=F|U. G is an analytic sheaf on V.

First Claim. F is a holomorphic vector bundle on $V \setminus \{0\}$ with fibers isomorphic to H.

Proof of First Claim. We need to check the local freeness of F. Fix $Q \in V \setminus \{0\}$. By Hahn-Banach there is $h \in V'$ such that $h(Q) \neq 0$. Set $M := \operatorname{Ker}(h)$. By the Open Mapping Theorem $M \cong H$. We will see that $F \mid V \setminus M \cong (V \setminus M) \times H$ (the trivial bundle) in the following way. Define the map $u : (V \setminus M) \times H \to \operatorname{Ker}(f) \mid (V \setminus M)$ sending any $(Q', m) \in (V \setminus M) \times H$ to m - (m(Q')/h(Q'))h. By construction $\operatorname{Im}(u) \subseteq \operatorname{Ker}(f) \mid (V \setminus M)$ and it is easy to check that we have equality because at each $Q' \in (V \setminus M)$ the linear space $\operatorname{Im}(u) \mid \{Q'\}$ is a hyperplane of V.

By First Claim E is a holomorphic vector bundle on U with fibers isomorphic to H. We only need to check that E satisfies the thesis of Theorem 2.

Second Claim. For every open neighborhood Ω of P in V and every holomorphic bundle A on $\Omega\setminus\{0\}$ the restriction map $H^0(\Omega\setminus\{P\},A)\to H^0(\Omega\cap U,A|\Omega\cap U)$ is surjective.

Proof of Second Claim. If V is finite-dimensional and A has finite rank, then Second Claim is a classical property of 2-concavity. If V is finite-dimensional, but A not finite rank, see [2]. The case "V infinite-dimensional" follows from the case finite-dimensional for Gâteaux analytic sections of A. Since a Gâteaux analytic section of A whose restriction to $A \cap U$ is Fréchet analytic (see [5], part (b) of Theorem 2.4.4), we conclude the proof of Second Claim.

Since sections of a trivial bundle induce a trivialization of that bundle, it is sufficient to prove that F is not trivial and that for every open neighborhood

108 E. Ballico

 Ω of P in V the restriction map $\rho: H^0(\Omega \setminus \{P\}, F | \Omega) \to H^0(\Omega \cap U, E | \Omega)$ is surjective. The surjectivity of ρ is Second Claim. Assume that F is trivial. By the definition of f we have the following exact sequence on V:

$$0 \to \operatorname{Ker}(f) \to \mathcal{O}_V^{V'} \to \mathcal{I}_{V,0} \to 0. \tag{1}$$

Since $\dim(V) \geq 2$, the restriction map

$$\eta: H^0(V, \mathcal{O}_V^{V'}) \to H^0(V \setminus \{0\}, \mathcal{O}_{V \setminus \{0\}}^{V'})$$

is surjective. Since $\mathcal{I}_{V,0}$ has no torsion, a diagram chasing using (1) gives the surjectivity of the restriction map $H^0(V, \operatorname{Ker}(f)) \to H^0(V \setminus \{0\}, F)$ and that this is true after restricting to any neighborhood Ω of P. Hence any trivialization of F would induce a trivialization of $\operatorname{Ker}(f)$. The sheaf $\operatorname{Ker}(f)$ is not trivial because its restriction to any finite-dimensional proper linear subspace of V has torsion, concluding the proof.

Proof of Theorem 3. Set $f := (f_1, \ldots, f_k)$. Let W be the scheme-theoretic zero-locus of f_1, \ldots, f_k . Thus $Z = W_{red}$ and we have a surjection $f : \mathcal{O}_V^{\oplus k} \to \mathcal{I}_W$. Set $E := \operatorname{Ker}(f)|U$ and copy the proof of Theorem 2.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

- [1] E. Ballico, Holomorphic Banach bundles on finite-dimensional q-complete complex manifolds, Math. Nachr., **256** (2003), 3–5.
- [2] E. Ballico, Extension of holomorphic vector bundles across a boundary point, *Complex Variables*, **48**, No. 11 (2003), 987–989.
- [3] L. Bungart, On analytic fiber bundles I. Holomorphic fiber bundles with infinite dimensional fibers, *Topology*, 7, No. 1 (1968), 55–68
- [4] S. Dineen, Sheaves of holomorphic functions on infinite dimensional vector spaces, *Math. Ann.*, **202** (1973), 337–235.
- [5] M. Hervé, Analyticity in Infinite Dimensional Spaces, Walter de Gruyter, Berlin-New York (1989).