ON k–GRACEFULNESS OF r–CROWN FOR COMPLETE BIPARTITE GRAPHS

Jirimutu1, Bao Yu-Lan2, Kong Fan-Li3

1,2,3College of Mathematics and Computer Science
Inner Mongolia University for Nationalities
Tongliao, 028043, P.R. CHINA
1e-mail: jrmt@sina.com
2e-mail: nashun168@sina.com

Abstract: In this paper we discuss the k– gracefulness of r– crown $I_r(k_{m,n})$ ($m \leq n, r \geq 2$) for complete bipartite graph and prove the conjecture when $m = 2, 3$, which is advanced by [2], all crown of complete bipartite graph $k_{m,n}$ ($m \leq n$) are k– graceful graph ($k \geq 2$), but it is very difficult to certain when $m \geq 4$.

AMS Subject Classification: 05C78, 05C50
Key Words: complete bipartite graph, graceful graph, k-graceful graph

1. Introduction

The research on gracefulness of graphs began since 1963 when G. Pingel introduced it and 1966 when A. Rosa published a paper on it. A. Rosa advanced a distinguish conjecture on graceful trees: all trees are graceful. This conjecture has not been proved or a disproved up to now. The concept of k-gracefulness for graphs was raised independently by Slater and Thuillier in 1982, when $k = 1$, it is the graceful graphs we usually studide. Obviously a k-graceful graph must be a 1-graceful graph, the inversion is not true. Both graceful graphs and k-graceful graphs have wide applications with respect to radio, net theory, astronomy, coding theory, etc.
2. Basic Concepts

Definition 1. Let $G(V, E)$ be a simple unoriented graph. If there exists a single-valued mapping $f: V(G) \rightarrow \{0, 1, \cdots, |E|\}$, such that the induced mapping from $f^*(u) = |f(u) - f(v)|$

$$f^*: E(G) \rightarrow \{1, 2, \cdots, |E|\}$$

be a bimapping for all edges $e = uv \in E(G)$, then the graph is called graceful graph and f is called graceful labelling or graceful value, while f^* is called the induced edge’s graceful labelling.

Definition 2. Let $G(V, E)$ be a simple unoriented graph, k be an arbitrary natural number larger than 2, if there exist a single-valued mapping:

$$f: V(G) \rightarrow \{0, 1, 2, \cdots, |E| + k - 1\},$$

such that the induced mapping from $f^*(uv) = |f(u) - f(v)|$

$$f^*: E(G) \rightarrow \{k, k + 1, \cdots, |E| + k - 1\}$$

be a bimapping for all edges $e = uv \in E(G)$, then the graph G is called k-graceful graph, f is called its k-graceful labelling or k-graceful value, while f^* is called the induced edge’s k-graceful labelling.

Theorem 1. (see [2]) All complete bipartite bipartite graphs $k_{m,n}$ are graceful graph.

Definition 3. The graph obtained by means of adding r hanged edges to each vertex of a $r-$ crown of the complete bipartite graph $k_{m,n}$ and denoted by $I_r(k_{m,n})$.

Theorem 2. (see [2]) The $1-$ crown $I_1(k_{m,n})$ of a complete bipartite graph is a graceful graph.

Professor Ma advanced in [2] the conjecture: The crown of a complete bipartite graph this conjecture has not proved or disproved up to now. In [3], we have showed that this conjecture is true when $m=1$. In this paper we have proved that this conjecture is true when $m = 2, 3$, for arbitrary $n \geq m$ and $r \geq 2$.
3. The Main Conclusions and the Proof

Theorem 3. When \(m = 2 \), for arbitrary \(r \geq 2 \) and \(n \geq 2 \), the \(r \)- crown \(I_r(k_{2,n}) \) of a complete bipartite graph be a \(k \)- graceful graph \((k \geq 2)\).

Proof. We set following signs and notations for the proof. In \((k_{m,n})\) let
\[X = \{x_1, x_2, \cdots, x_m\}, \ y = \{y_1, y_2, \cdots, y_n\}, \]
the vertex of the \(r \) hanged edges connected to each \(x_i(i=1, 2, \cdots, m) \) in \(X \) are denoted by \(x_{it}(t=1, 2, \cdots, r) \); the vertex of the \(r \) hanged edges connected to each vertex \(y_j(j=1, 2, \cdots, n) \) in \(Y \) are denoted by \(y_{jt}(j=1, 2, \cdots, n, t=1, 2, \cdots, r) \). Based on such notations we define the vertex lable \(f \) of \(I_r(k_{2,n})(n \geq 2, r \geq 2) \) as:

\[
f(x_i) = \begin{cases}
 k + 2n + (n+2)r - 1, & i = 1, \\
 k + 2r + n - 1, & i = 2;
\end{cases}
\]

\[
f(x_{it}) = \begin{cases}
 t - 1, & i = 1, \ t = 1, 2, \cdots, r, \\
 n + r + t - 1, & i = 2, \ t = 1, 2, \cdots, r;
\end{cases}
\]

\[
f(y_i) = r + j - 1, \ j = 1, 2, \cdots, n;
\]

\[
f(y_{jt}) = k + (j+1)r + n + j + t - 2, \ j = 1, 2, \cdots, n, \ t = 1, 2, \cdots, r.
\]

Obviously, \(f \) be a single valued mapping from \(V(I_r(k_{2,n})) \) to \(\{0, 1, 2, \cdots, |E(I_1(k_{2,n}))| + k - 1\} \). The edges lable induced by \(f^* \) be

\[
A = f^*(x_i x_{it}) = \{|f(x_i) - f(x_{it})| i = 1, 2, \cdots, r, t = 1, 2, \cdots, r\}
\]

\[
= \{|f(x_1) - f(x_{1t})| t = 1, 2, \cdots, r\} \cup \{|f(x_2) - f(x_{2t})| t = 1, 2, \cdots, r\}
\]

\[
= \{k + 2n - (n+1)r, k + 2n + (n+1)r + 1, \cdots, k + 2n + (n+2)r - 1\}
\]

\[
\bigcup \{k, k+1, \cdots, k+r-1\},
\]

\[
B = f^*(x_i y_i) = \{|f(x_i) - f(y_i)| i = 1, 2, j = 1, 2, \cdots, n\}
\]

\[
= \{|f(x_1) - f(y_{1t})| j = 1, 2, \cdots, r\} \cup \{|f(x_2) - f(y_{2t})| j = 1, 2, \cdots, n\}
\]

\[
= \{k + 2n + (n+1)r - j, j = 1, 2, \cdots, n\} \cup \{k + r + n - j| j = 1, 2, \cdots, n\}
\]

\[
= \{k + n + (n+1)r, k + n + (n+1)r + 1, \cdots, k + 2n + (n+1)r - 1\}
\]

\[
\bigcup \{k + r, k + r + 1, \cdots, k + r + n - 1\},
\]
Obviously, an one-to-one mapping from \(E(I_r(k_2, m)) \) onto \(\{ k, k + 1, \cdots, |E(I_r(k_2, m)| + k - 1 \} \). The edges sign induced from \(f^* \) be a single valued mapping from \(V(I_r(k_3, n)) \) to \(\{ 0, 1, 2, \cdots, |E(I_r(k_3, m)| + k - 1 \} \). The edges sign induced from \(f^* \) be

\[
A = f^*(x_i,x_{it}) = \{ |f(x_i) - f(x_{it})|i = 1, 2, \cdots, r, t = 1, 2, \cdots, r \} = \{ k + 3n + (n + 3)r - t|t = 1, 2, \cdots, r \}
\]

\[
\bigcup \{ k + 2n + (n + 1)r - t - 1|t = 1, 2, \cdots, r \} \bigcup \{ k + r - t|t = 1, 2, \cdots, r \} = \{ k + 3n + (n + 3)r - 1, k + 3n + (n + 3)r - 2, \cdots, k + 3n + (n + 2)r \}
\]

We tidy up the elements of each set and have an union

\[
A \bigcup B \bigcup C = \{ k, k + 1, \cdots, |E(I_r(k_2, m)| + k - 1 \}.
\]

The \(f^* \) be an one-to-one mapping from \(E(I_r(k_2, m)) \) onto \(\{ k, k + 1, \cdots, |E(I_r(k_2, m)| + k - 1 \} \), so the \(r \)-crown graph \(I_r(k_2, m) \) of a complete bipartite graph \(k_2, n \) be a \(k \)-graceful graph.

Theorem 4. When \(m = 3 \), for arbitrarly \(n \geq 3 \) and \(r \geq 2 \), the \(r \)-crown graph \(I_r(k_3, n) \) of a complete bipartite graph be a \(k \)-graceful graph \((k \geq 2)\).

Proof. With the notation in Theorem 3 we define the vertex label \(f \) of \(I_r(k_3, n) \) as

\[
f(x_i) = \begin{cases}
k + (4 - i)n + (n + 4 - i)r - 1, & i = 1, 2, \\
k + 3r + n - 1, & i = 3;
\end{cases}
\]

\[
f(x_{it}) = \begin{cases}
(i - 1)(r + 1) + t - 1, & i = 1, 2, t = 1, 2, \cdots, r, \\
2r + n + t - 1, & i = 3, t = 1, 2, \cdots, r;
\end{cases}
\]

\[
f(x_i) = \begin{cases}
r, & j = 1, \\
2r + j - 1, & j = 2, 3, \cdots, n;
\end{cases}
\]

\[
f(x_i) = \begin{cases}
k + 3n + (n + 3)r - t - 1, & j = 1, t = 1, 2, \cdots, r, \\
k + 3r + n + t - 1, & j = 2, t = 1, 2, \cdots, r, \\
k + n + r + (r + 1)j + t - 2, & j = 3, 4, \cdots, n, t = 1, 2, \cdots, r.
\end{cases}
\]

Obviously, \(f \) be a single valued mapping from \(V(I_r(k_3, n)) \) to \(\{ 0, 1, 2, \cdots, |E(I_r(k_3, m)| + k - 1 \} \). The edges sign induced from \(f^* \) be
\[\bigcup \{ k + 2n + (n + 1)r - 2, k + 2n + (n + 1)r - 3, \cdots, k + 2n + nr - 1 \} \]
\[\bigcup \{ k + r - 1, k + r - 2, \cdots, k \}, \]

\[
B = f^*(x_iy_i) = \{ |f(x_i) - f(y_i)|i = 1, 2, 3, j = 1, 2, \cdots, n \}
= \{ k + 3n + (n + 2)r - 1 | i = 1, j = 1 \} \bigcup \{ k + 2n + (n + 1)r - 1 | i = 2, j = 1 \}
\bigcup \{ k + 3n + (n + 1)r - j | i = 1, j = 2, 3, \cdots, n \}
\bigcup \{ k + 2n + nr - j | i = 2, j = 2, 3, \cdots, n \}
\bigcup \{ k + 2r + n - j | i = 2, j = 1 \} \bigcup \{ k + n + r - j | i = 3, j = 2, 3, \cdots, n \}
= \{ k + 3n + (n + 2)r - 1 \} \bigcup \{ k + 2n + (n + 1)r - 1 \}
\bigcup \{ k + 3n + (n + 2)r - 2, k + 3n + (n + 1)r - 3, \cdots, k + 2n + (n + 1)r \}
\bigcup \{ k + 2n + nr - 2, k + 2n + nr - 3, \cdots, k + n + nr \}
\bigcup \{ k + 2r + n - 1 \} \bigcup \{ k + n + r - 2, k + n + r - 3, \cdots, k + r \}, \]

\[
C = f^*(y_iy_{it}) = \{ |f(y_i) - f(y_{it})|i = 1, 2, \cdots, n, t = 1, 2, \cdots, r \}
= \{ k + 3n + (n + 2)r - t - 1 | j = 1, t = 1, 2, \cdots, r \}
\bigcup \{ k + n + r + t - j | j = 2, t = 1, 2, \cdots, r \}
\bigcup \{ k + n - r + rj + t - 1 | j = 3, 4, \cdots, n, t = 1, 2, \cdots, r \}
= \{ k + 3n + (n + 2)r - 2, k + 3n + (n + 2)r - 3, \cdots, k + 3n + (n + 1)r - 1 \}
\bigcup \{ k + n + r - 1, k + n + r, \cdots, k + n + 2r - 2 \}
\bigcup \{ k + n + 2r, k + n + 2r + 1, \cdots, k + n + 3r - 1, k + n + 3r, k + n + 3r + 1, \cdots, k + n + 4r - 1, \cdots, k + n + (n - 1)r, k + n + (n - 1)r, k + n + (n - 1)r, k + n + (n - 1)r - 1, \cdots, k + n + nr - 1 \}.
\]

We tidy up the elements of the sets and have an union
\[A \bigcup B \bigcup C = \{ k, k + 1, \cdots, |E(I_r(K_{3,n}))| + k - 1 \}. \]

Then \(f^* \) be an one-one mapping from \(E(I_r(K_{3,n})) \) onto
\[\{ k, k + 1, \cdots, |E(I_r(K_{3,n}))| + k - 1 \}. \]
So when \(m=3 \) the \(r \)-crown \(I_r(k_{3,n}) \) of a complete bipartite graph be a \(k \)-graceful graph.

Definition 4. For some gracefulness value of graceful graph \(G \), if there exist an integer \(h \) such that \(f(u) \leq h, f(v) > h, f(u) \leq h \) for each edge \((u, v) \in E(G) \), Then such gracefulness lable be called balanced lable, the integer \(h \) be called character of the lable.

It is not always true that all gracefulness grades possess balanced lable in the range of graceful graphs. A graph with balanced lable must be a bipartite graph. For \(k \)-gracefulness grades mentioned above become graceful lable when \(k = 1 \), obviously, they are balanced lable and their character \(h = mr + n - 1 \). We can extend the concept of balanced lable of graceful lable to \(k \)-gracefulness lable in the same way, four \(k \)-gracefulness lables mentioned above are also balanced lables and their characters invary, e.g. \(h = mr + n - 1 \).

Acknowledgements

This research is supported by Inner Mongolia University for Nationalities Natural Science Foundation Grant No. 2001045.

This research is supported by Inner Mongolia Talent development fund project.

References

[3] Jirimutu, On \(k \)-gracefulness of \(r \)-crown \(I_r(K_{1,n}) \) \((n \geq 2, r \geq 2) \) for complete bipartite grapkh, *Journal of Inner Mongolia University for Nationalities*, 2 (2003), 108-110.