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Abstract: The limiting distribution for Gauss-Newton estimators of (α, β) in
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1. Introduction

The spatial model

Zij = αZi−1,j + βZi,j−1 − αβZi−1,j−1 + ǫij (1.1)

has received considerable attention since being introduced by Martin [10]. For
example, Martin [11], Cullis and Gleeson [9], Basu and Reinsel [4] used the
model to analyze data in agriculture field trials. Properties of parameter es-
timators under stationarity assumptions can be found in Basu [1] and Basu
and Reinsel [2], [3]. The limiting distribution of a sequence of Gauss-Newton
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estimators of θ′ = (α, β) under certain nonstationary conditions is given by
Bhattacharyya [5], [6]. In particular, it is shown that when α = β = 1,

n3/2(θ̂n − θ)
D
−→ N(0,Γ1); whereas, (n3/2(α̂n − α), n(β̂n − β))

D
−→ N(0,Γ2)

provided α = 1 and |β| < 1, where Γ1 = diag(2,2) and Γ2 = diag(2, 1 − β2). It
should be stressed that significant differences in the asymptotic results occur
when one of the parameters exceeds one in absolute value. Indeed, the purpose
of this work is to analyze the case when α = 1 and |β| > 1.

It is assumed throughout that {Zij} is a spatial process obeying model (1.1)
and subject to the following constraints:

(A.1) α = 1, |β| > 1.
(A.2) Zi,j = 0 when i ∧ j ≤ 0.
(A.3) {ǫij} are i.i.d., mean zero, variance σ2 and each has a finite fourth

moment.
(A.4) {αn} and {βn} are initial estimators satisfying αn − 1 = OP (n−3/2)

and βn − β = OP (n−1/2β−n).

The existence of initial estimators obeying (A.4) is shown later. The sample
path space D([0, 1]), see Billingsley [8], of a process has been extended to the
two parameter case D2 := D([0, 1]× [0, 1]) by Bickel and Wichura [7] and shown
to be equipped with a metric which induces the Skorohod topology. The space
D2 is separable, complete and has Borel σ-field generated by the coordinate
mappings. The Gauss-Newton estimator θ̂n of θ is the random variable defined
in (2.7)-(2.8), and obeys equation (2.9). More generally, consider the random
element ∆n(·) in D2 which satisfies equation (2.10). Fix 0 < c ≤ 1, λ′ =
(λ1, λ2)ǫR

2 and define for each t′ = (t1, t2)ǫ[0, 1]
2,

∆c
n(t) = ∆n(t1, ct2), ψc

n(t) = λ′diag(n3/2, n1/2βn)(∆c
n(t) − θ) , (1.2)

and denote ψ1
n(t) simply by ψn(t). The primary result of this work is stated

below.

Theorem 1.1. Assume that model (1.1) and conditions (A.1)-(A.4) are
satisfied. Let ψn and ψc

n be as defined in (1.2) and denote c1 = 2λ2
1 and

c2 = (1 − β2)2λ2
2. Then:

(i) the finite-dimensional distributions of {ψn} converge in distribution to
those of a mean zero Gaussian process ψ having cov (ψ(s), ψ(t)) = c1(s1 ∧
t1)

2(s2 ∧ t2) + c2(s1 ∧ t1)1{1}(s2 ∧ t2)
(ii) {ψc

n} converges in distribution on D2 to a mean zero Gaussian process
ψc with cov (ψc(s), ψc(t)) = c1(s1 ∧ t1)

2 · (s2 ∧ ct2) when 0 < c < 1.

In particular, diag(n3/2, n1/2βn)(θ̂n−θ)
D
−→ N(0,Γ), where Γ = diag(2, (1−

β2)2).
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Remark 1.1. It is shown in Lemma 3.1 (ii) that one of the terms of {ψn}
fails to be tight in D2 and thus accounts for the restriction ψc

n of ψn in Theorem
1.1 (ii), 0 < c < 1.

2. Order and Tightness Properties

Denote

Xij = Zij − βZi,j−1, Yij = Zij − αZi−1,j , (2.1)

and according to (1.1),

Xij = αXi−1,j + ǫij and Yij = βYi,j−1 + ǫij. (2.2)

Employing (A.1)-(A.2),

Xij =
i
∑

k=1

ǫkj, Yij =

j
∑

ℓ=1

βj−ℓǫiℓ and Zij =

i,j
∑

k,ℓ=1

βj−ℓǫkℓ. (2.3)

The following order properties are straightforward to verify. Here t′ = (t1, t2)ǫ[0, 1]
2 =

[0, 1] × [0, 1] and [nt]′ = ([nt1], [nt2]).

Lemma 2.1.

(i) n−3

[nt]
∑

i,j=1

X2
i−1,j =

1

2
t21t2σ

2 +OP (n−1/2),

(ii) n−1β−2[nt2]

[nt]
∑

i,j=1

Y 2
i,j−1 =

t1σ
2

(1 − β2)2
+ oP (1),

(iii) n−2β−2[nt2]

[nt]
∑

i,j=1

Z2
i−1,j−1 =

t21σ
2

2(1 − β2)2
+OP (1),

(iv)

[nt]
∑

i,j=1

Xi−1,jYi,j−1 = OP (nβ[nt2]),

(v)

[nt]
∑

i,j=1

Xi−1,jZi−1,j−1 = OP (n2β[nt2]),

(vi)

[nt]
∑

i,j=1

Yi,j−1Zi−1,j−1 = OP (nβ2[nt2]),
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(vii)

[nt]
∑

i,j=1

Xi−1,jǫij = OP (n3/2),

(viii)

[nt]
∑

i,j=1

Yi,j−1ǫij = OP (n1/2β[nt2]),

(ix)

[nt]
∑

i,j=1

Zi−1,j−1ǫij = OP (nβ[nt2]),

(x) sup
1≤i≤[nt2]

E





[nt2]
∑

j=1

Xi−1,jǫij





4

= O(n4),

(xi) sup
1≤i≤[nt2]

E





[nt2]
∑

j=1

Yi,j−1ǫij





4

= O(β4[nt2]).

Bickel and Wichura (1971) give a sufficient condition in terms of moments
in order to guarantee tightness of a sequence of random elements in D2. Indeed,
let s′ = (s1, s2), t

′ = (t1, t2)ǫ[0, 1]
2 and define s < t when si ≤ ti and s ≪ t

when si < ti, i = 1, 2. Denote the rectangle set (s1, t1] × (s2, t2] by (s, t]. Let
Tn = {(k/n, ℓ/n) : k, ℓ are integers satisfying 0 ≤ k, ℓ ≤ n}. Then a sufficient
condition for tightness of a sequence {Vn} of random elements in D2 is that
there exist positive real numbers α1, α2, δ and M such that for each pair of
disjoint rectangles (s, t] and (u, v] having vertices in Tn and either a common
horizontal or vertical edge obeys:

E(|Vn(s, t]|α1 |Vn(u, v]|α2) ≤M(µ(s, t]µ(u, v])1+δ , (2.4)

where µ is a finite measure on [0, 1]2 and Vn(s, t] is defined below.

Another approach used below to improve the normalizing factor for tight-
ness of a sequence is use of the maximal inequality given by Bhattacharyya [6].
Here the sequence must form a strong martingale in the sense of Walsh [12]. In
particular, assume that Ft, t ∈ J is an increasing collection of sub-σ-fields on
(Ω,F, P ) in the sense that Fs ⊆ Ft when s < t, where J denotes a subset of the
set of all ordered pairs of positive integers. Suppose that each Vt is square inte-
grable. Then {Vt,Ft, t ∈ J} is called a strong martingale provided that for each
s, t ∈ J , E(Vt|Fs) = Vs when s < t and, moreover, E(V (s, t]|F∗

s) = 0, where
V (s, t] = Vt − Vs1t2 − Vt1s2

+ Vs and F∗
s denotes the smallest σ-field containing

each Fij with either i ≤ s1 or j ≤ s2.

Tightness of the sequences listed below are needed to show convergence in
distribution on D2 = D([0, 1]2). Since the proofs of (i)-(vi) are similar, only
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verification of (vi) and (vii) are presented here. It should be mentioned that not
all the normalizing factors given for tightness are necessarily the best possible
but are sufficient for our purposes.

Lemma 2.2. The following sequences in D2 are tight:

(i)







n−3

[nt]
∑

i,j=1

X2
i−1,j







,

(ii)







n−2β−2[nt2]

[nt]
∑

i,j=1

Y 2
i,j−1







,

(iii)







n−3β−2[nt2]

[nt]
∑

i,j=1

Z2
i−1,j−1







,

(iv)







n−5/2β−[nt2]

[nt]
∑

i,j=1

Xi−1,jYi,j−1







,

(v)







n−5/2β−[nt2]

[nt]
∑

i,j=1

Xi−1,jZi−1,j−1







,

(vi)







n−5/2β−2[nt2]

[nt]
∑

i,j=1

Yi,j−1Zi−1,j−1







,

(vii)







n−1−ρβ−n

[nt]
∑

i,j=1

Zi−1,j−1ǫij







, ρ > 0.

Proof. (vi) Denote Vn(t) = n−5/2β−2[nt2]
∑[nt]

i,j=1 Yi,j−1Zi−1,j−1 and let λ

denote the Lebesgue measure on [0, 1]2. Using (2.3),

E(Y 2
i,j−1) =

j−1
∑

ℓ=1

β2(j−1−ℓ)σ2 =
(1 − β2(j−1))σ2

1 − β2
= O(β2j)

and

E(Z2
i−1,j−1) =

i−1,j−1
∑

k,ℓ=1

β2(j−1−ℓ)σ2 = (i− 1)

(

1 − β2(j−1)

1 − β2

)

σ2 = O(iβ2j).

Verification is given when (s, t] and (u, v] have a common horizontal edge
since the vertical case is analogous. Employing Cauchy’s inequality, observe
that
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E(|Vn(s, t]| |Vn(u, v]|)

≤ Kn−5β−2[nt2]β−2[nv2]

[nt]
∑

i,j=[ns]+1

[nt1]
∑

i′=[ns1]+1

[nv2]
∑

j′=[nt2]+1

β2(j+j′)(ii′)1/2

≤Mλ(s, t]λ(u, v]

and thus by (2.4) {Vn} is tight in D2.
(vii) In order to obtain a sharper normalizing factor needed later, the mo-

ment criterion used to prove tightness in (vi) needs to be replaced by the tech-

nique used in Bhattacharyya [6], p. 1721. DefineWn(t) = n−1−ρβ−n
∑[nt]

i,j=1 Zi−1,j−1ǫij .
Given δ > 0, consider rectangles Rkℓ = [kδ, (k + 1)δ) × [ℓδ, (ℓ + 1)δ) and for
ǫ > 0, define An

kℓ = {supt∈Rkℓ
|Wn(t) −Wn(kδ, ℓδ)| > ǫ}. Tightness of {Wn}

in D2 is shown by verifying that for each ǫ > 0 and ν > 0 there exists a
δ > 0 such that limn

∑

kδ<1,ℓδ<1 P (An
kℓ) < ν. Denote µ0 = ([nkδ], [nℓδ]),

µ1 = ([n(k + 1)δ], [n(ℓ + 1)δ]) and let J = {(i, j) : µ0 < (i, j) < µ1}. Define for
each a = (a1, a2)ǫJ, Fa(F

∗
a) to be the smallest σ-field making each ǫij, i ≤ a1

and j ≤ a2 (either i ≤ a1 or j ≤ a2) measurable, respectively.
Let Ua =

∑a
i,j=1 Zi−1,j−1ǫij, aǫJ . Then {Ua − Uµ0

,Fa, aǫJ} is a strong
martingale in the sense of Walsh [12] as discussed above. According to the
maximal inequality of Bhattacharyya [6], Lemma 1.1, there exist positive real
numbers a0 and A0 for which

P (An
kℓ) ≤ A0τnǫ

−1n−1−ρβ−n(P{n−1−ρβ−n|Uµ1
− Uµ0

| ≥ ǫa−1
0 })

1

2

+A0(τnǫ
−1n−1−ρβ−n)3/2(P{n−1−ρβ−n|Uµ1

− Uµ0
| ≥ ǫa−1

0 })
1

4 ,

where τn = (E(Uµ1
− Uµ0

)2)
1

2 = O(nβn). Since τnn
−1−ρβ−n → 0, it follows

that P (An
kℓ) → 0 as n→ ∞ and thus limn

∑

kδ<1,ℓδ<1 P (An
kℓ) = 0. Hence {Wn}

is tight in D2.

Under (A.1)-(A.4), let θ′ = (α, β), θ
′
n = (αn, βn) and define

F ′
ij(θn) = (Xi−1,j + (β − βn)Zi−1,j−1, Yi,j−1 + (α − αn)Zi−1,j−1) ,

Gn(t) =

[nt]
∑

i,j=1

Fij(θn)F ′
ij(θn) ,

An(t) = diag(n−
3

2 , n−
1

2β−[nt2]) ,

B(t) = σ2diag

(

t21t2
2
,

t1
(1 − β2)2

)

,

Rij(θn) = −(α− αn)(β − βn)Zi−1,j−1 . (2.5)
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Let
fij(a, b) = aZi−1,j + bZi,j−1 − abZi−1,j−1

and
F ′

ij(a, b) = (∂fij(a, b)/∂a, ∂fij(a, b)/∂b).

Expanding fij(θ) about θn in model (1.1) provides

Zij = fij(θn) + F ′
ij(θn)(θ − θn) +Rij(θn) + ǫij. (2.6)

Define

δ̂n = G−1
n (1, 1)

n
∑

i,j=1

Fij(θn)(Zij − fij(θn)). (2.7)

Then
θ̂n = δ̂n + θn (2.8)

is called the “one step Gauss-Newton estimator” of θ. Substituting (2.6) into
(2.7) shows that θ̂n satisfies:

A−1
n (1, 1)(θ̂n − θ) = (An(1, 1)Gn(1, 1)An(1, 1))−1An(1, 1)

×
n
∑

i,j=1

Fij(θn)(Rij(θn) + ǫij). (2.9)

Moreover, let ∆n(·) denote the random element in D2 obeying:

A−1
n (1, 1)(∆n(t) − θ) = (An(1, 1)Gn(1, 1)An(1, 1))−1An(1, 1)

×

[nt]
∑

i,j=1

Fij(θn)(Rij(θn) + ǫij). (2.10)

Remark 2.1. Unfortunately addition in D([0, 1]) equipped with the Sko-
rohod metric is not a continuous operation (Billingsley [8], p. 137). However,
the following results are valid and used without further mention:

(i) Un
D
−→ a in D2, Vn

D
−→ V in D2 implies that Un + Vn

D
−→ a+ V in D2

(ii) Un
D
−→ a in R and Vn

D
−→ V in D2 implies that UnVn

D
−→ aV in D2,

where “a” denotes the constant random variable.
Lemma 2.3. Employing the notations of (2.5):

(i) An(t)Gn(t)An(t)
D
−→ B(t) in D4

2 .

(ii) An(t)

[nt]
∑

i,j=1

Fij(θn)Rij(θn)
D
−→ 0 in D2

2.
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(iii)



n−
3

2 (β − βn)

[nt]
∑

i,j=1

Zi−1,j−1ǫij, n
− 1

2β−n(α− αn)

[nt]
∑

i,j=1

Zi−1,j−1ǫij





D
−→ 0.

Proof. Verification of (ii) and (iii) are supplied here.
(ii) Note that

An(t)

[nt]
∑

i,j=1

Fij(θn)R(θn)

= −(α− αn)(β − βn)
(

n−
3

2

[nt]
∑

i,j=1

(Xi−1,jZi−1,j−1 + (β − βn)Z2
i−1,j−1),

n−
1

2β−[nt
2
]

[nt]
∑

i,j=1

(Yi,j−1Zi−1,j−1 + (α− αn)Z2
i−1,j−1)

)′

= (Sn(t) + Tn(t) + Un(t) + Vn(t))′.

It follows from (A.4), Lemma 2.1 and Lemma 2.2 that

Sn(t) = −n
3

2 (α− αn)(β − βn)βn · n−3β−n

×

[nt]
∑

i,j=1

Xi−1,jZi−1,j−1, n
3

2 (α− αn)(β − βn)βn

= OP (n−
1

2 ), {n−3β−n

[nt]
∑

i,j=1

Xi−1,jZi−1,j−1}

is tight in D2 and converges to zero in probability for each fixed tǫ[0, 1]2. Hence

Sn
D
−→ 0 in D2; likewise Tn

D
−→ 0 in D2.

Observe that

Un(t) = −n2(α− αn)(β − βn)βn · n−
5

2β−nβ−[nt2]

[nt]
∑

i,j=1

Yi,j−1Zi−1,j−1,

n2(α− αn)(β − βn)βn = OP (1)
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and according to Lemma 2.1 and Lemma 2.2,

{n−5/2β−nβ−[nt2]

[nt]
∑

i,j=1

Yi,j−1Zi−1,j−1}

is tight in D2 and converges to zero in probability for each fixed t ∈ [0, 1]2. As
in the finite-dimensional case, one can show that the product of a bounded in
probability sequence of random variables with a sequence of random elements

that converges to zero in D2 also converges to zero in D2. Hence Un
D
−→ 0 in

D2; likewise, Vn
D
−→ 0 in D2 and the desired conclusion follows.

(iii) It follows from (A.4) that n
1

2 (β − βn)βn = OP (1) and by Lemma 2.1

and Lemma 2.2 the sequence {n−2β−n
∑[nt]

i,j=1 Zi−1,j−1ǫij} converges to zero

in probability for each fixed t ∈ [0, 1]2 and is tight in D2. Hence n−
3

2 (β −

βn)
∑[nt]

i,j=1 Zi−1,j−1ǫij
D
−→ 0 inD2. Similarly, n−

1

2β−n(α−αn)
∑[nt]

i,j=1 Zi−1,j−1ǫij
D
−→

0 in D2 and (iii) follows.

3. Proof of Theorem 1.1

Given λǫR2 and using the notations given in (2.5), define (an, bn) = λ′[An(1, 1)Gn(1, 1)An(1, 1)]−1.

Employing (2.10), λ′A−1
n (1, 1)(∆n(t)−θ) = (an, bn)An(1, 1)

∑[nt]
i,j=1 Fij(θn)(Rij(θn)+

ǫij). According to Lemma 2.3 (i),

(an, bn)
D
−→ (a, b) = σ−2(2λ1, (1 − β2)2λ2) (3.1)

in R2 and thus it follows from Lemma 2.3 (ii) that the k-dimensional dis-
tributions of {λ′A−1

n (1, 1)(∆n(t) − θ)} converge in distribution provided the
corresponding k-dimensional distributions of

{(a, b)An(1, 1)

[nt]
∑

i,j=1

Fij(θn)ǫij}

converge, and the limits coincide.

Some preliminary notations and results are needed. According to Bickel and
Wichura [7], a necessary condition for a sequence {Vn} in D2 to be tight is for
each ǫ > 0, lim

δ↓0
lim P{w′′

δ (Vn) ≥ ǫ} = 0, where the notation is described below.

Let x ∈ D2 and t ∈ [0, 1]. Then x
(1)
t : [0, 1] → R is defined by x

(1)
t (t2) = x(t, t2)
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and likewise x
(2)
t (t1) = x(t1, t). Moreover, ‖x

(1)
t − x

(1)
s ‖ = supt2∈[0,1] |x(t, t2) −

x(s, t2)| and ‖x
(2)
t − x

(2)
s ‖ = supt1∈[0,1] |x(t1, t) − x(t1, s)|. Given δ > 0 and

x ∈ D2, denote w
′′(1)
δ (x) = sup{‖x

(1)
t −x

(1)
s ‖∧‖x

(1)
u −x

(1)
t ‖ : s ≤ t ≤ u, u−s ≤ δ}

and similarly for w
′′(2)
δ . Finally, w′′

δ (x) = w
′′(1)
δ (x) ∨ w

′′(2)
δ (x).

Recall the definitions of Xij and Yij defined in (2.3), where |β| > 1. The
following notations are used:

Vn(t) = n−
1

2β−n

[nt]
∑

i,j=1

Yi,j−1ǫij ,

V c
n (t) = n−

1

2β−n

[nt1],[nct2]
∑

i,j=1

Yi,j−1ǫij, 0 < c < 1 ,

Wn(t) =

[nt]
∑

i,j=1

(

an−
3

2Xi−1,j + bn−
1

2β−nYi,j−1

)

ǫij. (3.2)

Lemma 3.1. Let Vn, V
c
n and Wn be random elements in D2 as defined in

(3.1) and (3.2). Then:

(i) the finite-dimensional distributions of {Wn} converge in distribution to
a mean zero normal random vector W with

cov (W (s),W (t)) = σ4
(a2

2
(s1 ∧ t1)

2(s2 ∧ t2) +
b2(s1 ∧ t1)

(1 − β2)2
1{1}(s2 ∧ t2)

)

.

(ii) {Vn} fails to be tight in D2.

(iii) V c
n

D
−→ 0 in D2 when 0 < c < 1.

Proof. Verification of (i) is omitted since it follows the steps given by
Bhattacharyya [6], p. 1719 by employing a Martingale Central Limit Theorem.

(ii) Using the notations above, it suffices to show that

lim
δ↓0

limn P{w
′′
δ (Vn) ≥ ǫ} = 0

fails to hold. Suppose that ǫ > 0 is any arbitrary positive number. Then for

n ≥ 2δ−1, P{w′′
δ (Vn) ≥ ǫ} ≥ P

{

∣

∣

∣Vn

(

1, 1 −
1

n

)

− Vn

(

1, 1 −
2

n

)

∣

∣

∣ ∧
∣

∣

∣Vn(1, 1) − Vn

(

1, 1 −
1

n

)

∣

∣

∣ ≥ ǫ

}

. (3.3)
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Observe that Vn

(

1, 1 − 1
n

)

− Vn

(

1, 1 − 2
n

)

= n−
1

2β−n
∑n

i=1 Yi,n−2ǫi,n−1 and

Vn(1, 1) − Vn

(

1, 1 − 1
n

)

= n−
1

2β−n
∑n

i=1 Yi,n−1ǫin. Note that Yi,n−1ǫin and
Yi′,n−1ǫi′n are independent random variables when i 6= i′. One can use the
Lindeberg-Feller Central Limit Theorem to show that the triangular array

n−
1

2β−n
n
∑

i=1

Yi,n−1ǫin
D
−→ N(0, s21)

and

n−
1

2β−n
n
∑

i=1

Yi,n−2ǫi,n−1
D
−→ N(0, s22) ,

where s21 = σ4/β2(β2 − 1) and s22 = σ4/β4(β2 − 1). More generally, an applica-
tion of the Crámer-Wold device shows that

(

Vn

(

1, 1 −
1

n

)

− Vn

(

1, 1 −
2

n

)

, Vn(1, 1) − Vn

(

1, 1 −
1

n

))

D
−→ N(0,

∑

),

where
∑

= σ4

β2(β2−1)diag(1, β−2). It follows from (3.3) that

limnP{w
′′
δ (Vn) ≥ ǫ} ≥ P{|N(0, s21)| ∧ |N(0, s22)| ≥ ǫ} > 0

and thus {Vn} fails to be tight in D2.

(iii) Let ‖ · ‖ denote the sup-norm and d the Skorohod metric on D2. Since
d(x, y) ≤ ‖x−y‖ on D2, it follows that for δ > 0, P{d(V c

n , 0) ≥ δ} ≤ P{‖V c
n‖ ≥

δ} ≤ E‖V c
n‖/δ and thus it suffices to show that E‖V c

n‖ → 0 as n → ∞.
However,

‖V c
n‖ = sup

tǫ[0,1]2
|V c

n (t)| ≤ |β|−n

n,[nc]
∑

i,j=1

|Yi,j−1ǫij |

and thus E‖V c
n‖ = O(n|β|[nc]−n). Since 0 < c < 1 and |β| > 1, it follows that

V c
n

D
−→ 0 in D2.

Proof of Theorem 1.1 (i) As mentioned at the beginning of Section 3, the
finite-dimensional distributions of {ψn(t)} converge in distribution whenever

those of
{

(a, b)An(1, 1)
∑[nt]

i,j=1 Fij(θn)ǫij

}

converge, and the two limits coin-

cide. Employing Lemma 2.3 (iii), the finite-dimensional distributions of the
latter sequence converge in distribution exactly when those of the sequence
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{Wn} defined in (3.2) converge. This fact combined with Lemma 3.1 (i) and
(3.1) shows that the finite-dimensional distributions of {ψn(t)} converge in dis-
tribution to the desired limit.

(ii) Since 0 < c < 1, it follows from (i) that the finite-dimensional distri-
butions of {ψc

n} converge in distribution to those of a mean zero Gaussian
process ψc having cov (ψc(s), ψc(t)) = c1(s,∧t1)

2(s2 ∧ ct2). Moreover, ac-

cording to (3.1) and Lemma 2.3 and Lemma 3.1, ψc
n

D
−→ ψc in D2 provided

ann
− 3

2

∑[nt1],[nct2]
i,j=1 Xi−1,jǫij

D
−→ ψc(t) in D2. An argument similar to that given

by Bhattacharyya [6], p. 1720, shows that Tn(t) = an−
3

2

∑[nt]
i,j=1Xi−1,jǫij

D
−→

T (t) in D2, where T is a Gaussian process having cov (T (s), T (t)) = a2

2 (s1 ∧
t1)

2(s2 ∧ t2) = 2λ2
1(s1 ∧ t1)

2(s2 ∧ t2) and the desired conclusion follows.

Finally, it is established that initial estimators {αn} and {βn} obeying (A.4)
exist. According to (2.2), Yij = βYi,j−1 + ǫij; define the least squares estima-
tor βn =

∑n
i,j=1 YijYi,j−1

/
∑n

i,j=1 Y
2
i,j−1 and note that Yij = Zij − αZi−1,j =

Zij − Zi−1,j is observable since α = 1. It follows that n
1

2βn(βn − β) =

n−
1

2β−n
∑n

i,j=1 Yi,j−1ǫij
/

n−1β−2n
∑n

i,j=1 Y
2
i,j−1 and, moreover, the denomina-

tor converges to σ2/(1 − β2)2 in probability and the numerator is OP (1) by

Lemma 2.1. Hence βn − β = OP

(

n−
1

2β−n
)

.

Again by (2.2), Xij = αXi−1,j + ǫij; however,

∑n
i,j=1XijXi−1,j
∑n

i,j=1X
2
i−1,j

is not a valid estimator because Xij = Zij − βZi,j−1 is not observable since β
is unknown. This leads to the estimator

αn =

∑n
i,j=1(Zij − βnZi,j−1)(Zi−1,j − βnZi−1,j−1)

∑n
i,j=1(Zi−1,j − βnZi−1,j−1)2

. (3.4)

Note that Zij −βnZi,j−1 = Zij −βZi,j−1 +(β−βn)Zi,j−1 = Xij +(β−β)Zi,j−1.
Substituting Xij −Xi−1,j = ǫij and Yi,j−1 = Zi,j−1 −Zi−1,j−1 into (3.4) results
in

n
3

2 (αn − 1)

= n−
3

2

∑n
i,j=1(Xi−1,j + (β − βn)Zi−1,j−1)(ǫij + (β − βn)Yi,j−1)

n−3
∑n

i,j=1(Xi−1,j + (β − βn)Zi−1,j−1)2
.
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Expanding the products and applying Lemma 2.1 shows that the denominator
converges to σ2/2 in probability and the numerator is OP (1). Hence αn − 1 =

OP (n−
3

2 ) and (A.4) is satisfied.
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