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A CHARACTERIZATION OF P SU(19, q)
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Abstract: Let G be a finite group. The order of G is the product of coprime
positive integers which is called the order components of G. It was proved
that some non-abelian simple groups are uniquely determined by their order
components. As the main result of this paper, we show that the simple groups
PSU(19, q) are also uniquely determined by their order components. As corol-
laries of this result, the validity of a conjecture of J.G. Thompson on PSU(19, q)
is obtained.
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1. Introduction

For an integer n, let π(n) be the set of prime divisors of n. If G is a finite group
then π(G) is defined to be π(|G|). The prime graph Γ(G) of a group G is a
graph whose vertex set is π(G), and two distinct primes p and q are linked by an
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edge if and only if G contains an element of order pq. Let πi, i = 1, 2, . . . , t(G)
be the connected components of Γ(G). For |G| even, π1 will be the connected
component containing 2. Then |G| can be expressed as a product of some
positive integers mi, i = 1, 2, . . . , t(G) with π(mi) = πi. The integers mi’s are
called the order components of G. The set of order components of G will be
denoted by OC(G). If the order of G is even, we will assume that m1 is the
even order component and m2, . . . ,mt(G) will be the odd order components of
G. The order components of non-Abelian simple groups having at least three
prime graph components are obtained by G.Y. Chen [5, Tables 1, 2, 3]. The
order components of non-Abelian simple groups with two order components can
be obtained according to [14, 15] (See [8, 9]). The following groups are uniquely
determined by their order components: Sporadic simple groups, [2]; PSL2(q),
[5]; PSL(3, q), [8, 9]; PSL(5, q), [7]; C2(q), where q > 5 [10]; PSU(3, q) for
q > 5, [13]; PSU(5, q), [11]; PSU(11, q), [12].

In this paper, we prove that PSU(19, q) are also uniquely determined by
their order components, that is we have the following theorem.

Main Theorem. Let G be a finite group and M = PSU(19, q). Then
OC(G) = OC(M) if and only if G ∼= M .

2. Preliminary Results

In order to prove the main theorem, first we bring some lemmas.

Definition 2.1. (see [6]) A finite group G is called a 2-Frobenius group
if it has a normal series 1 < H < K < G, where K and G/H are Frobenius
groups with kernels H and K/H, respectively.

Lemma 2.2. (see [15], Theorem A) If G is a finite group with its prime
graph having more than one component, then G is one of the following groups:

(a) a Frobenius or 2-Frobenius group;
(b) a simple group;
(c) an extension of a π1−group by a simple group;
(d) an extension of a simple group by a π1−solvable group;
(e) an extension of a π1−group by a simple group by a π1−group.

Lemma 2.3. (see [15], Lemma 3) If G is a finite group with more than one
prime graph component and has a normal series 1 E H E K E G such that H
and G/K are π1-groups and K/H is simple, then H is a nilpotent group.

The next lemma follows from Theorem 2 in [1].

Lemma 2.4. Let G be a Frobenius group of even order and let H, K be
Frobenius complement and Frobenius kernel of G, respectively. Then t(G) = 2,
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and the prime graph components of G are π(H), π(K) and, G has one of the
following structures:

(a) 2 ∈ π(K) and all Sylow subgroups of H are cyclic.
(b) 2 ∈ π(H), K is an Abelian group, H is a solvable group, the Sylow

subgroups of odd order of H are cyclic groups and the 2−Sylow subgroups of
H are cyclic or generalized quaternion groups.

(c) 2 ∈ π(H), K is an Abelian group and there exists H0 ≤ H such that
|H : H0| ≤ 2, H0 = Z × SL(2, 5), (|Z|, 2.3.5) = 1 and the Sylow subgroups of
Z are cyclic.

The next lemma follows from Theorem 2 in [1] and Lemma 2.3.

Lemma 2.5. Let G be a 2-Frobenius group of even order. Then t(G) = 2
and G has a normal series 1 E H E K E G such that:

(a) π1 = π(G/K) ∪ π(H) and π(K/H) = π2;
(b) G/K and K/H are cyclic, |G/K| divides |Aut (K/H)|,

(|G/K|, |K/H|) = 1 and |G/K| < |K/H|;
(c) H is nilpotent and G is a solvable group.

Lemma 2.6. (see [4], Lemma 8) Let G be a finite group with t(G) ≥ 2 and
let N be a normal subgroup of G. If N is a πi−group for some prime graph
component of G and m1,m2, . . . ,mr are some order components of G but not
a πi-number, then m1m2 · · ·mr is a divisor of |N | − 1.

Lemma 2.7. (see [3], Lemma 1.4) Suppose G and M are two finite groups
satisfying t(M) ≥ 2, N(G) = N(M), where N(G)={n | G has a conjugacy class
of size n }, and Z(G) = 1. Then |G| = |M |.

The next lemma follows from Lemma 1.5 in [3].

Lemma 2.8. Let G1 and G2 be finite groups satisfying |G1| = |G2| and
N(G1) = N(G2). Then t(G1) = t(G2) and OC(G1) = OC(G2).

Lemma 2.9. Let G be a finite group and let M be a non-Abelian sim-
ple group with t(M) = 2 satisfying OC(G) = OC(M). Let |M | = m1m2,
OC(M) = {m1,m2}, and π(mi) = πi for i=1 or 2. Then |G| = m1m2 and one
of the following holds:

(a) G is a Frobenius or 2-Frobenius group;
(b) G has a normal series 1 E H E K E G such that G/K is a π1 - group,

H is a nilpotent π1-group, and K/H is a non-Abelian simple group. Moreover
OC(K/H) = {m′

1,m
′
2, . . . ,m

′
s,m2}, |K/H| = m′

1m
′
2 . . . m′

sm2 and m′
1m

′
2 . . . m′

s|m1

where π(m′
j) = π′

j, 1 ≤ j ≤ s. Also we have |G/K| | |Out (K/H)|.

Proof. The first part of the lemma follows from the above lemmas. Since
t(G) ≥ 2, we have t(G/H) ≥ 2. Otherwise t(G/H) = 1, so that t(G) = 1.
Moreover, we have Z(G/H) = 1. For any xH ∈ G/H and xH 6∈ K/H, xH
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GCD q + 1 q − 1 q
2
+ 1 q

4
+ 1 q

8
+ 1 c1 c2 c3 c4

q + 1 q + 1 1 or 2 1 or 2 1 or 2 1 or 2 1 or 11 1 or 7 1 1 or 5

q − 1 1 or 2 q − 1 1 or 2 1 or 2 1 or 2 1 1 1 1

q
2

+ 1 1 or 2 1 or 2 q
2
+ 1 1 or 2 1 or 2 1 1 1 1

q
4

+ 1 1 or 2 1 or 2 1 or 2 q
4

+ 1 1 or 2 1 1 1 1

q
8

+ 1 1 or 2 1 or 2 1 or 2 1 or 2 q
8
+ 1 1 1 1 1

Table 1:

induces an automorphism of K/H and this automorphism is trivial if and only
if xH ∈ Z(G/H). Therefore, G/K ≤ Out(K/H) and since Z(G/H) = 1, it
follows that |G/K| | |Out(K/H)|.

Lemma 2.10. Let M = PSU(19, q). Suppose D(q) = q19+1
k(q+1) , where

k = (19, q + 1). Then:

(a) If p ∈ π(M), then |Sp| ≤ q171, where Sp ∈ Sylp(M);

(b) If p ∈ π1(M) and pα | |M |, then pα − 1 ≡ 0 (modD(q)) if and only if
pα = q38, q76, q114 or q152;

(c) If p ∈ π1(M) and pα | |M |, then pα + 1 ≡ 0 (mod D(q)) if and only if
pα = q19, q57, q95, q133 or q171.

Proof. (a) From Table 1 in [8] we have |M | = q171(q + 1)18(q − 1)9(q2 − q +
1)6(q2+1)4(q4−q3+q2−q+1)3(q2+q+1)3×(1−q+q2−q3+q4−q5+q6)2(q4+
1)2(q6−q3+1)2(q4+q3+q2+q+1)×(1−q+q2−q3+q4−q5+q6−q7+q8−q9+
q10)(q4−q2+1)(q6+q3+1)×(1−q+q2−q3+q4−q5+q6−q7+q8−q9+q10−q11+
q12)×(q6+q5+q4+q3+q2+q+1)(1+q−q3−q4−q5+q7+q8)(q8+1)×(1−q+

q2−q3+q4−q5+q6−q7+q8−q9+q10−q11+q12−q13+q14−q15+q16)× (q19+1)
k(q+1) .

For convenience, let c1 := 1− q + q2 − q3 + q4 − q5 + q6 − q7 + q8 − q9 + q10,
c2 := 1−q+q2−q3 +q4−q5 +q6, c3 := q4−q2 +1, c4 := q4−q3 +q2−q+1,
c5 := q4+q3+q2+q+1, c6 := q6−q3+1, c7 := q2+q+1, c8 := q2−q+1, c9 :=
1− q + q2− q3 + q4− q5 + q6− q7 + q8− q9 + q10− q11 + q12, c10 := 1+ q− q3−
q4 − q5 + q7 + q8, c11 := q6 + q5 + q4 + q3 + q2 + q + 1, c12 := q6 + q3 + 1, and
c13 := 1−q+q2−q3+q4−q5+q6−q7+q8−q9+q10−q11+q12−q13+q14−q15+q16.

Now by easy calculations we can compute the greatest common divisors of
every pair of

{ q, q − 1, q + 1, q2 + 1, q4 + 1, q8 + 1, c1, c2, c3, c4, c5,

c6, c7, c8, c9, c10, c11 c12 c13 }.

Obviously q is coprime with respect to another factors of |M |. In Table 1 and
Table 2 we present some of these results.
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GCD c5 c6 c7 c8 c9 c10 c11 c12 c13

q + 1 1 1 or 3 1 1 or 3 1 or 13 1 1 1 1 0r 17

q − 1 1 or 5 1 1 or 3 1 1 1 1 or 7 1 or 3 1

q
2

+ 1 1 1 1 1 1 1 1 1 1

q
4

+ 1 1 1 1 1 1 1 1 1 1

q
8

+ 1 1 1 1 1 1 1 1 1 1

Table 2:

By easy calculations we determine the greatest common divisors of any two
factors of |M |.

Now let pα| |M | and p ∈ π1. As we mentioned above we can claim that
one of the following occurs: pα is a divisor of q171, 216 × 38 × 53 × 72 × 11 ×
13 × 17 × (q + 1)18, 225 × 34 × 5 × 7 × (q − 1)9, 320(q2 − q + 1)6, 230(q2 + 1)4,
310(q2 + q + 1)3, 230(q4 + 1)2, 518(q4 − q3 + q2 − q + 1)3, 59(q4 + q3 + q2 + q + 1),
(q4− q2 +1), 324(q6− q3 +1)2, 312(q6 + q3 +1), 79(q6 + q5 + q4 + q3 + q2 + q +1),
718(1− q + q2 − q3 + q4 − q5 + q6)2, (1 + q − q3 − q4 − q5 + q7 + q8), 233(q8 + 1),
1118(1 − q + q2 − q3 + q4 − q5 + q6 − q7 + q8 − q9 + q10), 1318(1− q + q2 − q3 +
q4 − q5 + q6 − q7 + q8 − q9 + q10 − q11 + q12), 1718(1 − q + q2 − q3 + q4 − q5 +
q6 − q7 + q8 − q9 + q10 − q11 + q12 − q13 + q14 − q15 + q16).

Therefore the order of every Sylow subgroup of G is less than or equal to
q171, and hence (a) follows.

(b) Let there exists p ∈ π1(M), pα | |M | and pα − 1 ≡ 0 (mod D(q)). It is
obvious that pα > D(q). Similar to the proof of (a) we must consider different
cases. For q ≤ 27 numerical calculations show that there is no pα such that (b)
holds. Hence we can let q > 27. But it is straightforward to see that if q ≥ 29,
then D(q) > (q + 1)18/38.

We consider the following cases:

(1) If pα | 216 × 38 × 53 × 72 × 11× 13× 17× (q + 1)18, then we consider the
following subcases:

(1.1) Let p 6= 2, 3, 5, 7, 11, 13,17 and pα | (q + 1)18 and pα − 1 ≡ 0 (mod
D(q)), then pα − 1 = sD(q) for some s > 0. But (q + 1)18/38 < D(q), which
implies that pα = (q +1)18/t, where st ≤ 38. Now, numerical calculations show
that these equations have no a solution in Z and hence, there can not exist any
p and α such that the above relations holds.

(1.2) If p = 2, then 2α|216(q+1)18. Hence 216(q+1)18/t−1 = sD(q), where
st ≤ 217 × 19, since 216(q + 1)18 < 217 × 19D(q) for q > 27. By expanding the
above equation we can get a diophantine equation and by solving this equation
we see that there exist no α such that (b) holds.
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(1.3) If p = 3, 5, 7, 11, 13 or 17, then 3α|38(q + 1)18, 5α|53(q + 1)18,
7α|72(q + 1)18, 11α|11(q + 1)18, 13α|13(q + 1)18, 17α|17(q + 1)18, respectively.
We get a contradiction similar to (1.2).

(2) If pα | 225 × 34 × 5× 7× (q− 1)9, then pα divides 225(q− 1)9, 34(q− 1)9,
5(q−1)9 or 7(q−1)9. But in each case pα < D(q) which implies that pα−1 6≡ 0
(mod D(q)).

(3) If pα is a divisor of 320(q2−q+1)6, 310(q2+q+1)3, 230(q2+1)4,233(q4+1)2,
518(q4−q3+q2−q+1)3, 59(q4+q3+q2+q+1), (q4−q2+1), 718(1−q+q2−q3+
q4−q5 +q6)2, 324(q6−q3 +1)2, 312(q6−q3 +1), 79(q6 +q5 +q4 +q3 +q2 +q+1),
(1+q−q3−q4−q5+q7 +q8), 233(q8 +1), 1118(1−q+q2−q3 +q4−q5 +q6−q7 +
q8 − q9 + q10), 1318(1− q + q2− q3 + q4 − q5 + q6− q7 + q8 − q9 + q10− q11 + q12),
1718(1−q+q2−q3+q4−q5+q6−q7+q8−q9+q10−q11+q12−q13+q14−q15+q16),
then in each case pα < D(q) which implies that pα − 1 6≡ 0 (mod D(q)).

(4) At last, let pα|q171. Then we consider two subcases, namely k = 1 and
k = 19. Since the proofs are similar we state only one of them, namely k = 1
and the other case is similar.

We know that q = pn for some n > 0.

First, we prove that if pβ|q19 and pβ + 1 ≡ 0 (mod D(q)), then pβ = q19.
We have

pβ + 1 = s.D(q) = s.
q19 + 1

q + 1
= s(q18 − q17 + q16 − · · · + q2 − q + 1),

which implies that 1 ≤ s ≤ q+1, since pβ ≤ q19. Also since q|pβ we have q|s−1
which implies that q ≤ s − 1. Therefore q = s and hence pβ = q19.

Now we prove that if pα|q38 and pα − 1 ≡ 0 (mod D(q)), then pα = q38.
Now we consider two cases. First let pα ≤ q19 and pα − 1 ≡ 0 (mod D(q)). In
this case pα − 1 = s.D(q), where s < q + 1. Since q|pα we have q|s + 1 and
hence q ≤ s + 1. Therefore s = q or s = q − 1. But easy calculation shows that
in each case pα − 1 6= s.D(q), which is a contradiction. Therefore pα > q19 and
hence pα = q19pm for some m > 0. Thus we have

pα − 1 = q19pm − 1 = pm(q19 + 1) − pm − 1.

Therefore D(q)|pm + 1 which implies that pm = q19, by the above statement
and hence pα = q38.

If pα > q38 and pα|q171, then by a similar method we conclude that pα = q76,
q114 or q152.

(c) Similar to part (b) we conclude that pα must be equal to q19, q57, q95,
q133 or q171 and the proof is completed.
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Remark. In the sequel of this paper and specially in the proof of the
main theorem, for convenience we suppose that X = {q38, q76, q114, q152} and
Y = {q19, q57, q95, q133, q171}. Therefore if p ∈ π1(M) and pα | |M |, then
pα − 1 ≡ 0 (mod D(q)) if and only if pα ∈ X, and pα + 1 ≡ 0 (mod D(q)) if
and only if pα ∈ Y .

Lemma 2.11. Let G be a finite group and M = PSU(19, q) and OC(G) =
OC(M). Then G is neither a Frobenius group nor a 2−Frobenius group.

Proof. We will use some results about Frobenius groups. For example we
know that if G is a Frobenius group, by Lemma 2.4, OC(G) = {|H|, |K|},
where K and H are the Frobenius kernel and the Frobenius complement of
G, respectively. Also we know that |H| | (|K| − 1), and hence |H| < |K|. So

|H| = q19+1
(q+1)(19,q+1) , |K| = |G|/|H|. There exists a prime p such that pα|7(q−1)9.

If P is a p−Sylow subgroup of K, then since K is nilpotent, P ⊳ G and hence
D(q) | |P | − 1 by Lemma 2.6, which implies that pα ∈ Y by Lemma 2.10 (b).
But obviously 7(q − 1)9 < q38 which is a contradiction. Therefore, G is not a
Frobenius group.

Let G be a 2-Frobenius group. By Lemma 2.5, there is a normal series

1 E H E K E G such that |K/H| = q19+1
(q+1)(19,q+1) < 216(q + 1)18 and |G/K| <

|K/H|. Thus there exists a prime p such that p | 216(q +1)18 and p||H|. If P is
a p−Sylow subgroup of H, since H is nilpotent, P must be a normal subgroup

of K with P ⊆ H and |K| = q19+1
k(q+1) |H|. Therefore, q19+1

k(q+1) | (|P |−1), by Lemma

2.6 and hence q38| |P |, which is impossible since |P | ≤ 216(q + 1)18. Therefore,
G is not a 2-Frobenius group.

Lemma 2.12. Let G be a finite group. If the order components of G are
the same as those of M = PSU(19, q), then G has a normal series 1EHEKEG
such that H and G/K are π1−groups and K/H is a simple group. Moreover, the
odd order component of M is equal to some of those of K/H, and in particular,
t(K/H) ≥ 2.

Proof. The first part of the lemma follows from the above lemmas since
the prime graph of M has two components. For primes p and q, if K/H has an
element of order pq, then G has one. Hence, by the definition of prime graph
component, the odd order component of G must be an odd order component
of K/H.
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3. Proof of Main Theorem

By Lemma 2.12, G has a normal series 1 E H E K E G such that H and G/K
are π1-groups, K/H is a non-Abelian simple group, t(K/H) ≥ 2 and the odd
order component of M is an odd order component of K/H.

We now proceed the proof in the following steps:

Step 1. If K/H ∼= An, where n = p, p + 1, p + 2 and p ≥ 5 is a prime
number, then we have two cases:

Case 1. k = 1. In this case, p or p− 2 are equal to q19+1
q+1 . If p = q19+1

q+1 , then

p − 1 = q(q − 1)(q2 − q + 1)(q2 + q + 1)(q6 − q3 + 1)(q6 + q3 + 1) and

p − 2 = q18 − q17 + q16 − q15 + q14 − q13 + q12 − q11 + q10 − q9 + q8

− q7 + q6 − q5 + q4 − q3 + q2 − q − 1 . (1)

But easy calculation shows that (p − 2, |G|) | 31 × 17. But for q > 1, D(q) >
31 × 17 and it is a contradiction.

If p − 2 = q19+1
q+1 , then we proceed similarly for p − 4 since p > 5.

Case 2. k = 19. Then p or p− 2 is equal to q19+1
19(q+1) and p− 2 or p− 4 must

be equal to q18−q17+q16−q15+···−q−37
19 , respectively. Now we proceed similarly to

the last case and get a contradiction.

Step 2. If K/H is a sporadic simple group, then D(q) must be equal to 5,
7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 67, 71, which has no solution,
since D(2) = 174763.

Therefore K/H is a simple group of Lie type.

Step 3. If K/H ∼= E6(q
′) or 2E6(q

′), then we get a contradiction.

Step 4. If K/H ∼= Ar(q
′), then we distinguish the following 6 cases:

4.1. K/H ∼= Ap′−1(q
′), where (p′, q′) 6= (3, 2), (3, 4).

In fact we have D(q) = (q′p
′

− 1)/((q′ − 1)(p′, q′ − 1)) and hence q′p
′

− 1 ≡ 0

(mod D(q)). Now by using Lemma 2.10(b) we have q′p
′

∈ X, which implies

that q′p
′

= q38, q76, q114 or q152. If p′ ≥ 11, then q′
p
′(p′−1)

2 > q171, which is
impossible by Lemma 2.11(a). Therefore we must check cases p′ = 3, 5 and 7.
If p = 3 and q′3 = q38, then

(q19 − 1)(q + 1)(19, q + 1) = (q′ − 1)(3, q′ − 1), q′
3

= q38.

But these equations have no common solution in Z, and hence this case is also
impossible. If p′ = 3 and q′3 = q76, q114 or q152; or if p′ = 5, 7, then we get a
contradiction similarly.
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4.2. K/H ∼= Ap′(q
′), where (q′ − 1)|(p′ + 1). Then q′p

′

∈ X. But for p′ > 7

we have q′
p
′(p′+1)

2 > q171, which is impossible. If p′ = 3, 5 or 7, then q′ − 1 < 8,
since q′ − 1 | p′ + 1. Now easily we can get a contradiction.

4.3. K/H ∼= A1(q
′), where 4|(q′ + 1).

The odd order components of K/H are q′ and (q′ − 1)/2.

If D(q) = q′−1
2 , then q′ ∈ X, which implies that q′ = q38, q76, q114 or q152. If

q′ = q38, then we have (q19+1)/k(q+1) = q38−1
2 . Therefore, 2 = k(q+1)(q19−1)

and it is impossible.

If D(q) = q′, then by similar method in Step 1, we get a contradiction.

4.4. K/H ∼= A1(q
′), where 4|(q′ − 1).

The odd order components of K/H are q′ and (q′ + 1)/2.

If D(q) = q′+1
2 , then q′ ∈ Y , which implies that q′ = q19, q57 q95, q133 or

q171. By similar method in (4.3), we get a contradiction

If D(q) = q′ then we proceed similarly to above case and get a contradiction.

4.5. K/H ∼= A1(q
′), where 4 | q′.

The odd order components of K/H are q′+1 and q′−1. By similar method
in last case, we get a contradiction.

4.6. K/H ∼= A2(2) or K/H ∼= A2(4). Then D(q) must be equal to 3, 5, 7,
9 which is impossible.

Step 5. If K/H ∼= Br(q
′), or Cr(q

′), or Dr(q
′), or F4(q

′), or 3D4(q
′), or

E8(q
′), or 2G2(q

′), by a similar method we get contradictions.

Step 6. If K/H ∼= E7(2), E7(3),
2E6(2), or 2F4(2)

′, then D(q) must be
equal to 13, 17, 19, 73, 127, 757, 1093 which is impossible.

Step 7. If K/H ∼= G2(q
′), then we consider 3 cases:

7.1. K/H ∼= G2(q
′), where 2 < q′ ≡ 1(mod 3). Then D(q) = q′2−q′+1 and

hence q′3 ∈ Y , which implies that q′3 = q19, q57, q95, q133 or q171. If q′3 = q19,
then

q′3 + 1

q′ + 1
=

q19 + 1

k(q + 1)
.

Obviously k = 1 implies that q = q′ which is impossible. If k = 19, then
q19 = (19q + 18)3, which has no solution in Z.

7.2. K/H ∼= G2(q
′), where 2 < q′ ≡ −1(mod 3). Then D(q) = q′2 + q′ + 1

and hence q′3 ∈ X. Now we can proceed similar to 7.1 and get contradiction.

7.3. K/H ∼= G2(q
′), where 3|q′. Then q′2 ± q′ + 1 = D(q). This is similar

to case 7.1 and case 7.2.

Step 8. If K/H ∼= 2F4(q
′), where q′ = 22r+1 > 2, or 2B2(q

′), where q′ =
22t+1 > 2 we can get a contradiction by a similar method in above step.

Step 9. If K/H ∼= 2Dr(q
′), then we consider 6 cases:
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9.1. K/H ∼= 2Dr(q
′), where r = 2t ≥ 4.

9.2. K/H ∼= 2Dr(2), where r = 2t + 1 ≥ 5.
9.3. K/H ∼= 2Dp(3), where 5 ≤ p 6= 2r + 1.
9.4. K/H ∼= 2Dr(3), where r = 2t + 1 6= p, t ≥ 2.
9.5. K/H ∼= 2Dp(3), where p = 2t + 1, t ≥ 2.
9.6. K/H ∼= 2Dp+1(2), where p = 2r − 1, r ≥ 2.
In all of above cases, we get a contradiction.
Step 10. If K/H ∼= 2Ar(q

′), then we consider 3 cases:
10.1. K/H ∼= 2A3(2),

2A3(3) or 2A5(2). Then D(q) must be equal to 5, 7,
11 which is impossible.

10.2. K/H ∼= 2Ap′(q
′), where (q′ + 1)|(p′ + 1) and (p′, q′) 6= (3, 3), (5, 2).

Then D(q) = q′p
′

+ 1/q′ + 1 and hence q′p ∈ Y which implies that q′p
′

= q19,

q57, q95, q133 or q171. If p+1
2 > 9, then q′p(p+1)/2 > q171 which is a contradiction,

by Lemma 2.10(a). Therefore p′ = 3, 5, 7, 11, 13, 17. If p′ = 3, then q′ = 3,
since q′ + 1|p′ + 1. But it is a contradiction, since (p′, q′) 6= (3, 3).

If p′ = 5, then q′ + 1|6. Since (p′, q′) 6= (5, 2), we have q′ = 5. But q19 = 55,
which is a contradiction.

Similarly we get a contradiction in other cases.
10.3. K/H ∼= 2Ap′−1(q

′). Then q′p
′

= q19, q57, q95, q133 or q171. If p′ > 19,

then q′
p
′(p′−1)

2 > q171, which is impossible. Otherwise, if p′ = 3, 5, 7, 11, 13 or
17, then

(q′ + 1)(p′, q′ + 1) = (q + 1)(19, q + 1), q′
p′

= q19.

But these equations have no common solution in Z. If p′ = 19, then q = q′.
Thus |G| = |PSU(19, q)| = |K/H| = |K|/|H| which implies that |H| = 1
and |K| = |G| = |PSU(19, q)|. Therefore, K = PSU(19, q) and hence G =
PSU(19, q).

The proof of the main theorem is now completed.

Remark 3.1. It is a well-known conjecture of J.G. Thompson that if G is
a finite group with Z(G) = 1 and M is a non-Abelian simple group satisfying
N(G) = N(M), then G ∼= M .

We can give a positive answer to this conjecture for the groups under dis-
cussion.

Corollary 3.2. Let G be a finite group with Z(G) = 1, M = PSU(19, q)
and N(G) = N(M), then G ∼= M .

Proof. By Lemma 2.8 if G and M are two finite groups satisfying the
conditions of Corollary 3.2, then OC(G) = OC(M). So the main theorem
implies this corollary.



A CHARACTERIZATION OF PSU(19, q) 507

Acknowledgments

The author would like to thank the Institute for Studies in Theoretical Physics
and Mathematics (IPM) Tehran, Iran for the financial support (No. 82200013).

References

[1] G.Y. Chen, On Frobenius and 2-Frobenius group, J. Southwest China Nor-

mal Univ., 20, No. 5 (1995), 485-487.

[2] G.Y. Chen, A new characterization of sporadic simple groups, Algebra

Colloq., 3, No. 1 (1996), 49-58.

[3] G.Y. Chen, On Thompson’s conjecture, J. Algebra, 15 (1996), 184-193.

[4] G.Y. Chen, Further reflections on Thompson’s conjecture, J. Algebra, 218
(1999), 276-285.

[5] G.Y. Chen, A new characterization of PSL2(q), Southeast Asian Bulletin

of Math, 22 (1998), 257-263.

[6] K.W. Gruenberg, K.W. Roggenkamp, Decomposition of the augmentation
ideal and of the relation modules of a finite group, Proc. London Math.

Soc., 31 (1975), 146-166.

[7] A. Iranmanesh, S.H. Alavi, A characterization of simple groups PSL(5, q),
Bult. Austral. Math. Soc., 65 (2002), 211-222.

[8] A. Iranmanesh, S.H. Alavi, B. Khosravi, A characterization of PSL(3, q)
where q is an odd prime power, J. Pure and Applied Algebra, 170, No. 2-3
(2002), 243-254.

[9] A. Iranmanesh, S.H. Alavi, B. Khosravi, A characterization of PSL(3, q)
for q = 2n, Acta Math. Sinica, English series, 18, No. 3 (2002), 463-472.

[10] A. Iranmanesh, B. Khosravi, A characterization of C2(q) where q > 5,
Comment Math. Univ. Carolinae, 43, No. 1 (2002), 9-21.

[11] A. Iranmanesh, B. Khosravi, A characterization of PSU5(q), International

Mathematical Journal, 3, No. 2 (2003), 129-141.

[12] A. Iranmanesh, B. Khosravi, A characterization of PSU11(q), Canadian

Mathematical Bulletin, To Appear.



508 A. Iranmanesh

[13] A. Iranmanesh, B. Khosravi, S.H. Alavi, A characterization of PSU(3, q)
for q > 5, Southeast Asian Bulletin Math, 26, No. 2 (2002), 33-44.

[14] A.S. Kondtrat’ev, Prime graph components of finite groups, Math. USSR-

sb., 67, No. 1 (1990), 235-247.

[15] J.S. Williams, Prime graph components of finite groups, J. Algebra, 69
(1981), 487-513.


