ON PRIME SUBMODULES OF MULTIPLICATION MODULES

A. Khaksari, H. Sharif, M. Ershad
1,2,3Department of Mathematics
Shiraz University
Shiraz, 71454, IRAN
1e-mail: Akhaksari@spnu.ac.ir
2e-mail: sharif@math.susc.ac.ir
3e-mail: ershad@shirazu.ac.ir

Abstract: The main aim of this paper is extending Anderson’s Theorem [2] to multiplication modules and extending Cohen’s Theorem to multiplication modules without assumption that M is finitely generated.

AMS Subject Classification: 13A15, 13C05
Key Words: module, multiplication module, prime submodule

1. Introduction

Throughout this paper R is a commutative ring with identity and M is a unitary R-module. A proper submodule P of M is called prime if for any $r \in R$ and $m \in M$ with $rm \in P$ we have $m \in P$ or $rM \subseteq P$. An R-module M is called a multiplication module provided that for every submodule N of M there exists an ideal I of R such that $N = IM$. The main aim in the first section of
this paper is extending Anderson’s Theorem [2] to multiplication modules. We show that if \(M \) is a multiplication module and every minimal prime submodule of \(M \) is finitely generated then \(M \) is finitely generated. This shows that the extension of Cohen’s Theorem for a multiplication module \(M \) is true without the assumption that \(M \) is finitely generated. In the second section, we shall give some results concerning the multiplication modules and the Jacobson radical of modules.

Definition 1.1. Let \(N \) be a submodule of \(M \) and \(N = IM, I \triangleleft R \), then we say that \(I \) is an ideal of \(N \).

Definition 1.2. Let \(N_1 = I_1M \) and \(N_2 = I_2M \). Then we define the product of \(N_1 \) and \(N_2 \) by \(N_1N_2 = I_1I_2M \).

Lemma 1.3. The product of two submodules in a multiplication module is well-defined and it is a submodule of \(M \).

Proof. Let \(N_1 = I_1M = I_2M = N_2 \) and \(K_1 = J_1M = J_2M = K_2 \). Now we have

\[
(I_1J_1)M = I_1(J_1M) = I_1(J_2M) = J_2(I_1M) = J_2(I_2M) = (I_2J_2)M
\]

therefore the product is well-defined. \(\square \)

Remark. If \(M \) is a multiplication module and \(N = IM \), then \(N = IM = (N : M)M \).

Lemma 1.4. Let \(P \) be a prime submodule of \(R \)-module \(M \). Then \((P : M) \) is a prime ideal of \(R \).

Proof. Evident. \(\square \)

Lemma 1.5. Let \(M \) be a multiplication \(R \)-module and \(N_1 = IM, N_2 = JM \) and \(I \subseteq J \). Then \(N_1 \subseteq N_2 \). Also if \(N_1 \subset N_2 \) then \((N_1 : M) \subset (N_2 : M) \).

Proof. Evident. \(\square \)

Theorem 1.6. Let \(P \) be a prime submodule of a multiplication \(R \)-module \(M \), and \(UV \subseteq P \) for submodules \(U \) and \(V \) of \(M \) then \(U \subseteq P \) or \(V \subseteq P \).

Proof. Let \(P \) be prime, \(U = I_1M \) and \(V = I_2M \). Now if \(UV = I_1I_2M \subseteq P \). Then \(I_1I_2 \subseteq (P : M) \) so that either \(I_1 \subseteq (P : M) \) or \(I_2 \subseteq (P : M) \) therefore \(I_1M \subseteq (P : M)M \) or \(I_2M \subseteq (P : M)M \). Hence \(U \subseteq P \) or \(V \subseteq P \). \(\square \)

Definition 1.7. Let \(M \) be a multiplication module and \(N \) be a submodule of \(M \). Then \(N \) is called nilpotent if \(N^k = 0 \) for some positive integer \(k \), where \(N^k \) denotes the product of \(N \), \(k \) times.
Theorem 1.8. Let M be a multiplication module. A submodule N of M is nilpotent if and only if for every I, the ideal of N, $I^k \subseteq \text{ann}(M)$, for some positive integer k.

Proof. Let I be the ideal of N then

$$N^k = 0 \iff I^k M = 0 \iff I^k \subseteq \text{ann}(M)$$

Corollary 1.9. Let M be a faithful (torsion free) multiplication module and N a submodule of M. Then N is nilpotent if and only if every ideal of N is nilpotent.

Lemma 1.10. Let M be a multiplication module, N_1 and N_2 finitely generated submodules of M then $N_1 N_2$ is also finitely generated.

Proof. Let $N_1 = I_1 M = \sum_{i=1}^{n} R a_i m_i$ and $N_2 = I_2 M = \sum_{j=1}^{k} R b_j m'_j$, where $m_i, m'_j \in M$ and $a_i \in I_1, b_j \in I_2$ for all i, j. We claim that

$$N_1 N_2 = \sum_{i,j} R a_i b_j m_i = \sum_{i,j} R a_i b_j m'_j \quad i = 1, \ldots, n, \quad j = 1, \ldots, k.$$

Clearly $\sum_{i,j} R a_i b_j m_i \subseteq N_1 N_2$. Now each element of $N_1 N_2$ is a finite sum of elements of the form abm, where $m \in M$, $a \in I_1$, $b \in I_2$. But we have $abm = a(\sum_{j=1}^{k} c_j b_j m'_j)$, where $c_j \in R$. Hence

$$abm = \sum_{j=1}^{k} c_j b_j (am'_j) = \sum_{j=1}^{k} c_j b_j (\sum_{i=1}^{n} d_{ij} a_i m_i),$$

where $d_{ij} \in R$. This shows that $abm \in \sum_{i,j} R a_i b_j m_i$. Similarly we have $N_1 N_2 = \sum_{i,j} R a_i b_j m'_j$. □

Anderson in [2] proved the following theorem: Let R be a commutative ring with identity, and let $I \neq R$ be an ideal of R. If every prime ideal minimal over I is finitely generated, then there are only finitely many prime ideals minimal over I.

Now we shall extend this result to multiplication modules.

Theorem 1.11. Let M be a multiplication module and N a proper submodule of M such that every prime submodule of M minimal over N is finitely generated. Then there are only finitely many prime submodules of M minimal over N.
Proof. Let
\[S = \{P_1P_2\ldots P_n : \text{each } P_i \text{ is a prime submodule minimal over } N\} \].

If for some \(C = P_1P_2\ldots P_n \in S \) we have \(C \subseteq N \), then by Theorem 1.6 any prime submodule \(P \) minimal over \(N \) contains some \(P_i \) so \(\{P_1, P_2, \ldots, P_n\} \) is the set of minimal prime submodules of \(N \). Therefore we may assume that \(N \) contain no element of \(S \). Now consider the set
\[T = \{K|N \subseteq K \text{ and } C \not\subseteq K \text{ for each } C \in S\} \].

Now by Lemma 1.10 each element of \(S \) is finitely generated and therefore by Zorn’s lemma \(T \) has a maximal element \(P \). Now we shall prove that \(P \) is prime. Let \(am \in P \) with \(m \not\in P \) and \(a \not\in (P : M) \). So there exists, \(m_1 \in M \) such that \(am_1 \not\in P \). Hence \(P \subseteq P + Rm \) and \(P \subseteq P + Ram_1 \). Now by the maximality of \(P \) there exist elements \(P_1P_2\ldots P_n \) and \(P'_1P'_2\ldots P'_k \) in \(S \) such that \(P_1P_2\ldots P_n \subseteq P + Rm \) and \(P'_1P'_2\ldots P'_k \subseteq P + Ram_1 \). Now let \(b \in P_1P_2\ldots P_nP'_1P'_2\ldots P'_k \). Then there exist \(x \in (P_1 : M)(P_2 : M)\ldots(P_n : M) \) and \(y \in (P'_1 : M)(P'_2 : M)\ldots(P'_k : M) \) and \(m_2 \in M \) such that
\[b = xym_2 = x(p' + ram_1) = xp' + raxm_1 = xp' + ra(p'' + tm) = xp' + rap'' + rtm \in P \],

where \(p', p'' \in P \) and \(r, t \in R \). This shows that \(P_1P_2\ldots P_nP'_1P'_2\ldots P'_k \subseteq P \), a contradiction, therefore \(P \) is a prime submodule. But then since \(P \supseteq N \), \(P \) contains a prime submodule \(Q \) minimal over \(N \) thus \(Q \in S \), a contradiction. \(\square \)

Now by [16] Theorem 3.7 and the above theorem we have the following result.

Corollary 1.12. Let \(R \) be commutative ring and \(M \) a multiplication module such that every minimal prime submodule of \(M \) is finitely generated, then \(M \) is finitely generated.

As a corollary we can prove the following theorem, which is due to Karakas [7].

Corollary 1.13. Let \(R \) be commutative ring and \(M \) a multiplication module. Then \(M \) is Noetherian if and only if, every prime submodule of \(M \) is finitely generated.
2. Some Results on Jacobson Module and Multiplication Module

Definition 2.1. Let M be an R-module. The Jacobson radical of M (denoted $J(M)$) is the intersection of all maximal submodules of M. If no maximal submodule exists then we set $J(M) = M$.

Similarly the Jacobson radical of R will be denoted by $J(R)$.

Remark. We always have $J(R)M \subseteq J(M)$ where R is a commutative ring and M is an R-module.

MacCasland proved (see [10], Theorem 1.14) that if R is a local ring and M finitely generated R-module then $J(M) = J(R)M$. Now we shall show that the theorem is true for a multiplication R-module M without the assumption that M is finitely generated.

Lemma 2.2. Let M be a non zero multiplication R-module then every proper submodule of M is contained in a maximal submodule of M.

Proof. See [16], Theorem 2.5. \qed

Lemma 2.3. Let R be a local ring and M a multiplication R-module. Then $J(M) = J(R)M$.

Proof. By assumption $J(M) = IM$ for some ideal I. Since $I \subseteq J(R)$ so that $J(M) = IM \subseteq J(R)M$. But we always have $J(R)M \subseteq J(M)$, consequently $J(M) = J(R)M$. \qed

Definition 2.4. Let M be a finitely generated R-module. We say that M is of rank n ($n \in \mathbb{Z}^+$) if M has a minimal generating set of n elements and does not have any minimal generating set of fewer than n elements.

Definition 2.5. A submodule N of M is called small in M if for any submodule K of M, $N + K = M \implies K = M$.

Lemma 2.6. Let M be multiplication R-module, $N \subseteq M$. Then the following conditions are equivalent:

(i) $N \subseteq J(M)$.

(ii) N is small in M.

Proof. (i)\implies(ii) Suppose for some $C \leq M$, we have $M = N + C$. If $C \neq M$ then by Lemma 2.2, there exists a maximal submodule $B < M$ such that $C \subseteq B$.

But $N \subseteq J(M) \subseteq B$ implies that $N + C \subseteq B \neq M$. Thus $C = M$.

(ii)\implies(i) Suppose that for every $C \leq M$ such that $M = N + C$, we have $C = M$. Suppose then that $N \not\subseteq J(M)$. Then there is a maximal submodule $B < M$ such that $N \not\subseteq B$. Thus $N + B = M$, but $B \neq M$. This contradicts the hypothesis. Hence $N \subseteq J(M)$. \qed
Theorem 2.7. Let R be a local ring, M a multiplication R-module. Then every submodule of M is small.

Proof. Let $N < M$. Then there exists ideal I of R such that $N = IM$. Since R is local so that $J(R) = m$ and $I \subseteq m$. Now by Lemma 2.3 $N \subseteq J(M)$ and by Lemma 2.6, N is small. \(\square\)

Corollary 2.8. Let R be a local ring and M a multiplication R-module. Then M satisfy the following statements.

(i) $J(M) = J(R)M$.

(ii) M is local.

(iii) every submodule of M is small.

Proof. (i) By 2.3.

(ii) Let $J(R) = m$ and $N_1 = I_1M$, $N_2 = I_2M$ maximal submodules of M. Then $N_1 \subseteq J(R)M$ and $N_2 \subseteq J(R)M$. Since N_1 and N_2 are maximal so that $N_1 = N_2 = J(R)M$.

(iii) By 2.7. \(\square\)

Theorem 2.9. Let M be a multiplication module, $B < M$ and $J(M/B) = 0$. Then $J(M) \subseteq B$.

Proof. Let $x \notin B$. Since $J(M/B) = 0$ by Lemma 2.2 there exists maximal submodule K of M such that $x \notin K$ so that $x \notin J(M)$.

Corollary 2.10. Let R be a local ring and $0 \neq M$ be a finitely generated multiplication R-module. Then M is a cyclic module.

Proof. Let N be a maximal submodule of M and $a \in M - N$. But $< a > + N = M$. Now since by Theorem 2.7 N is small so that $< a > = M$. \(\square\)

Lemma 2.11. Let M be a finitely generated R-module, say $M = \langle \{a_i\}_{i=1}^n \rangle$. If $x \in J(M)$, and $r \in R$, then $M = \langle a_k - rx, \{a_i\}_{i \neq k} \rangle$.

Proof. See [10], Lemma 2.1. \(\square\)

Theorem 2.12. Let M be a finitely generated (not necessarily multiplication) module, N is small in M iff $\frac{M}{N} = \langle \{m_i + N\}_{i=1}^n \rangle$, implies that $M = \langle \{m_i\}_{i=1}^n \rangle$.

Proof. (\implies) By Lemma 2.6 $N \subseteq J(M)$. Now let $M = \langle g_1, g_2, \ldots, g_m \rangle$ and $\frac{M}{N} = \langle \{m_i + N\}_{i=1}^n \rangle$ so for each g_k we have $g_k + N = \sum_{i=1}^n r_i^{(k)} m_i + N$ for each $k = 1, 2, \ldots, m$. Hence $g_k = \sum r_i^{(k)} m_i + n_k$ for some $n_k \in N \subseteq J(M)$. Now by Lemma 2.11, $M = \langle g_1 - n_1, \ldots, g_m - n_m \rangle$ and for each k, $g_k - n_k \in \langle \{m_i\}_{i=1}^n \rangle$.

(⇐) Let \(M = \langle g_1, g_2, \ldots, g_n \rangle \) and \(N + K = M \) we shall show that \(K = M \). We have \(g_i = n_i + k_i \), \(1 \leq i \leq n \) for some \(n_i \in N, k_i \in K \). So that \(\langle g_1 - n_1, g_2 - n_2, \ldots, g_n - n_n \rangle \leq K \). But

\[
\frac{M}{N} = \langle g_1 + N, \ldots, g_n + N \rangle = \langle g_1 - n_1 + N, \ldots, g_n - n_n + N \rangle.
\]

Now by assumption \(M = \langle g_1 - n_1, \ldots, g_n - n_n \rangle \). Hence \(K = M \). \(\square \)

Corollary 2.13. Let \(M \) be a finitely generated \(R \)-module and \(N \) small in \(M \). Then \(\text{rank} \, M = \text{rank} \, M_N \).

Proof. By Lemma 2.6 \(N \subseteq J(M) \). Now let \(\text{rank} \, M = m \) and \(\text{rank} \, \frac{M}{N} = n \). Clearly \(m \geq n \). If \(\{m_1 + N, \ldots, m_n + N\} \) is a minimal generating set of \(\frac{M}{N} \). Then by Theorem 2.12 we have that \(M = \langle m_1, \ldots, m_n \rangle \) which implies that \(\text{rank} \, M = m \leq n \). Thus \(\text{rank} \, M = \text{rank} \, \frac{M}{N} \). \(\square \)

Theorem 2.14. Let \(M \) be a finitely generated \(R \)-module and \(N \leq M \). Then the following statements are equivalent:

(i) \(N \) is small in \(M \)

(ii) \(N \subseteq J(M) \)

(iii) If \(\frac{M}{N} = \langle \{m_i + N\}_{i=1}^n \rangle \), then \(M = \langle m_i \rangle_{i=1}^n \).

Proof. By 2.6 and 2.12. \(\square \)

Theorem 2.15. Let \(M \) be a finitely generated \(R \)-module, \(N < M \) and

\[
\frac{M}{N} = \langle \{m_i + N\}_{i=1}^n \rangle \implies M = \langle m_i \rangle_{i=1}^n.
\]

Then \(M \) is local and so \(N \) is small.

Proof. Let \(N_1 \) and \(N_2 \) be maximal submodules of \(M \) and \(a \in N_1 - N_2 \). Then since \(\frac{M}{N_2} \) is simple module \(\frac{M}{N_2} = \langle a + N_2 \rangle \) therefore by assumption \(M = \langle a \rangle \) that is a contradiction because \(\langle a \rangle \subseteq N_1 \). Hence \(J(M) = N_1 \). But \(N \subseteq N_1 = J(M) \) consequently \(N \) is small. \(\square \)

Theorem 2.16. Let \(M \) be a finitely generated or multiplication \(R \)-module such that every prime submodule of \(M \) is small. Then \(M \) is local and every submodule of \(M \) is small and also \(M \) is cyclic module.

Proof. Since every maximal submodule is prime and so that small. Therefore if \(N_1 \) and \(N_2 \) are maximal submodules. Hence \(N_1 + N_2 = M \) and therefore \(N_1 = M \) or \(N_2 = M \) that is a contradiction consequently \(M \) is local say maximal submodule is \(N_1 \). Now since every proper submodule \(N \) is contain in \(N_1 = J(M) \) so that \(N \) is small. Now let \(a \in M - N_1 \). Then \(N_1 + \langle a \rangle = M \). Since \(N_1 \) is small so that \(\langle a \rangle = M \). \(\square \)
References

