ON PERTURBATION PROPERTIES OF FUZZY RELATION EQUATIONS WITH MAX-PRODUCT COMPOSITION

Zhang Chengyi¹§, Li Dongya², Dang Pingan²
¹Department of Computer Science and Mathematics
Hainan Normal University
Haikou, Hainan, 571158, P.R. CHINA
e-mail: chengyizh@163.net
²Department of Mathematics
Zhumadian Teachers’ College
Zhumadian, Henan, 463000, P.R. CHINA

Abstract: In this paper, the solving process of fuzzy relation equations with max-product composition is simplified. By the fuzzy solution invariant matrices, the perturbation properties of fuzzy relation equations with max-product composition are considered.

AMS Subject Classification: 15A09
Key Words: fuzzy relation equation, solution invariant matrices, perturbation

The perturbation techniques is an important mathematical tool and the perturbation theory of fuzzy relation equations to be applied to fuzzy control, fuzzy inference and fuzzy logic as well. Tang [6] has discussed the perturbation issues of fuzzy relation equations with max-min composition. In this paper, the solution invariant matrix of fuzzy matrix is defined and the solving process of
fuzzy relation equations with max-product composition is simplified. By the fuzzy solution invariant matrices, the perturbation properties of fuzzy relation equations are considered.

1. Basic Notions

Let

\[A \circ X = B, \quad \bigvee_{j=1}^{n} (a_{ij}x_j) = b_i \quad (i = 1, 2, \ldots, m) \]

be a fuzzy relation equation, where

\[A = (a_{ij})_{n \times m}, \quad X = (x_j)_{n \times 1}, \quad B = (b_i)_{m \times 1} \]

are fuzzy matrices with elements belong to \([0, 1]\) and the sign “\(\circ\)” stands for the max-product composition.

Similar to the paper [6], the perturbation elements in matrix \(A\) can be defined as follows.

Definition 1.1. In equation (1), assume that \(a_{ij}\) is an element of \(A\). If for \(\varepsilon > 0\), where \(\varepsilon\) is small enough, such that \(a_{ij} - \varepsilon > 0, a_{ij} + \varepsilon \leq 1\), when \(a_{ij}\) perturbs in \([a_{ij} - \varepsilon, a_{ij} + \varepsilon]\), the set of all solution of the equation (1) varies, then \(a_{ij}\) is called an element without perturbation in \(A\), denoted by EWP.

Definition 1.2. In equation (1), assume that \(a_{ij}\) is an element of \(A\). If \(a_{ij}\) perturbs within \([a_{ij}', 1]\)(\(a_{ij} \leq a_{ij}'\)), the set of all solution of the equation (1) is invariable, then \(a_{ij}\) is called an upper-closed middle perturbation element in \(A\), denoted by UCMPE.

Definition 1.3. In equation (1), assume that \(a_{ij}\) is an element of \(A\). If \(a_{ij}\) perturbs within \([0, a_{ij}']\)(\(a_{ij} \geq a_{ij}'\)), the set of all solution of the equation (1) is invariable, then \(a_{ij}\) is called an upper-closed perturbation element in \(A\), denoted by UCPE.
equation (1) is invariable, then \(a_{ij} \) is called a lower-closed perturbation element in \(A \), denoted by LCPE. If \(a_{ij} \) is not only an LCMPE but also a UCMPE, then \(a_{ij} \) is called a MCPE.

2. Fuzzy Solution Invariant Matrix

The solving process of fuzzy relation equation

\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
& \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\circ
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}
\]

has been studied by some scholars [5], [3], [2], [4], [1]. We have given the following simplifying by the fuzzy solution invariant matrix.

Definition 2.1. Let \(\beta : [0, 1]^2 \to [0, 1] \) be a mapping, \(\forall a, b \in [0, 1] \), define

\[
a_{\beta}b = \begin{cases}
b/a, & \text{if } a > b, \\
1, & \text{if } a \leq b.
\end{cases}
\]

For the equation (1), we have the following result.

Lemma 2.1. If the equation (1) is solvable, then

\[
\bigwedge_{j=1}^{n} a_{ij} \geq b_i, \quad i = 1, 2, \ldots, m.
\]

Lemma 2.2. The equation (1) is solvable iff \(X_d = A^T \beta B \) is the maximum solution of the equation (1), where \(X_d = (c_1, c_2, \ldots, c_n)^T \), and \(c_j = \bigwedge_{i=1}^{m} a_{ij} b_i \).

Definition 2.2. If the equation (1) is solvable, then \(S(A, B) = X_0 | A \circ X_0 = B \) is called the set of all solution of the equation (1). For \(X_1, X_2 \in S(A, B) \), \(X_i = (x_1^i, x_2^i, \ldots, x_n^i) (i = 1, 2) \), let \(X_1 \leq X_2 \) iff \(x_k^1 \leq x_k^2 (k = 1, 2, \ldots, n) \). It is obvious that \(\leq \) is a partial ordering on \(S(A, B) \), \((S(A, B), \leq) \) is a lattice with min and max as its meet and join, respectively.

In the following, we suppose \(S(A, B) \neq \emptyset \).

Definition 2.3. Given the equation (1), then

\[
A^{(1)} = (a_{ij}^{(1)}), a_{ij}^{(1)} = \begin{cases}
a_{ij}, & a_{ij} c_j = b_i, \\
0, & \text{otherwise}.
\end{cases}
\]
is called the reduced matrix of A, where $X_d = (c_1, c_2, \ldots, c_n)^T$ is the maximum solution of the equation (1).

Theorem 2.3. Given the equation (1) then

$$S(A, B) = S(A^{(1)}, B).$$

Proof. Suppose that $X_d = (c_1, c_2, \ldots, c_n)^T$ is the maximum solution of the equation (1). $\forall i \in \{1, 2, \ldots, m\}$, we denote $I_1^i = \{j|a_{ij}c_j < b_i\}$, $I_2^i = \{j|a_{ij}c_j = b_i\}$, $I_3^i = \{j|a_{ij}c_j > b_i\}$. For brevity, I_1^i, I_2^i, I_3^i are denoted by I_1, I_2, I_3 respectively. If there exists a pair (i, j) such that $a_{ij}c_j > b_i$, then $\bigvee_{j=1}^n (a_{ij}c_j) \geq b_i$, it implies $I_3 = \emptyset$.

Let $X = (x_1, x_2, \ldots, x_n)^T \in S(A, B)$, then for all i, we have

$$b_i = \bigvee_{j=1}^n (a_{ij}x_j) = (\bigvee_{j \in I_1} (a_{ij}x_j)) \bigvee (\bigvee_{j \in I_2} (a_{ij}x_j)).$$

Since $\bigvee_{j \in I_1} (a_{ij}x_j) < b_i$, thus $b_i = \bigvee_{j \in I_1} (a_{ij}x_j) = \bigvee_{j=1}^n (a_{ij}^{(1)}x_j)$. Then $X = (x_1, x_2, \ldots, x_n)^T \in S(A^{(1)}, B)$.

Conversely, suppose that $J_1 = \{j|a_{ij}^{(1)} = 0\}$, $J_2 = \{j|a_{ij}^{(1)} \neq 0\}$, then $J_1 = I_1 \cup I_3 = I_1$, $J_2 = I_2$, hence

$$c_j = \bigwedge_{i=1}^m (a_{ij}\beta b_i) = (\bigwedge_{j \in J_1} (a_{ij}\beta b_i)) \bigwedge (\bigwedge_{j \in J_2} (a_{ij}\beta b_i)).$$

If $j \in J_1$, and $a_{ij} \leq b_i$, then $a_{ij}\beta b_i = a_{ij}^{(1)}\beta b_i = 1$.

If $j \in J_1$, $a_{ij} > b_i$, and $a_{ij}c_j \neq b_i$, then $a_{ij}c_j < b_i$, $a_{ij}\beta b_i = b_i/a_{ij} > c_j$, thus

$$c_j = \bigwedge_{j \in J_2} (a_{ij}\beta b_i) = \bigwedge_{i=1}^m (a_{ij}^{(1)}\beta b_i).$$

It illustrates that the maximum solution of $A \circ X = B$ is equal to the ones of $A^{(1)} \circ X = B$.

Suppose $X = (x_1, x_2, \ldots, x_n)^T \in S(A^{(1)}, B)$, we have

$$b_i = \bigvee_{j=1}^n (a_{ij}^{(1)}x_j) \leq \bigvee_{j=1}^n (a_{ij}x_j) \leq \bigvee_{j=1}^n (a_{ij}c_j) = b_i,$$
then \(X \in S(A, B) \), it implies that \(S(A, B) = S(A^{(1)}, B) \).

Definition 2.4. Let \(A \circ X = B \) and \(E \circ X = B \) be two fuzzy relation equations. \(A \) and \(E \) are called the fuzzy solution invariant matrices about \(B \) if \(S(A, B) = S(E, B) \).

Theorem 2.4. Let \(A \circ X = B \) and \(E \circ X = B \) be two fuzzy relation equations. \(A \) and \(E \) are fuzzy solution invariant matrices about \(B \) iff \(S(A^{(1)}, B) = S(E^{(1)}, B) \).

Proof. It is clear by Theorem 2.3 and Definition 2.4.

3. The Perturbation Issues of Fuzzy Relation Equations

Definition 3.1. Let \(A = (a_{ij})_{m \times n} \) and \(C = (c_{ij})_{m \times n} \) be two fuzzy matrices. We shall write \(A \leq C \) if \(a_{ij} \leq c_{ij} \) for all pairs \((i, j)\), where \(1 \leq i \leq m, 1 \leq j \leq n \). And write \(A < C \) if \(A \leq C \) and \(A \neq B \).

Definition 3.2. Given the equation (1). \(A \) is called a fuzzy matrix without perturbation about \(B \) if every element \(a_{ij} \) of \(A \) is the EWP of \(A \). Otherwise, \(A \) is called a fuzzy perturbation matrix.

Theorem 3.1. Given the equation (1). Then \(a_{ij} \) is a LPE of \(A \) within \([0, b_i] \) if \(a_{ij} < b_i \). Moreover, \(a_{ij} \) is a LCPE of \(A \) within \([0, b_i] \) when \(c_j < 1 \). \(a_{ij} \) is a LPE of \(A \) within \([0, b_i] \) and is not a LCPE of \(A \) within \([0, b_i] \) when \(c_j = 1 \).

Proof. If \(a_{ij} < b_i \), then \(a_{ij} \beta b_i = 1 \) and \(a_{ij}^{(1)} = 0 \). We replace \(a_{ij} \) by \(e_{ij} \left(e_{ij} \in [0, b_i] \right) \) and let the other elements are invariable, so we get a new matrix \(E = (e_{ij}) \). Hence \(e_{ij} \beta b_i = 1 \) and \(e_{ij}^{(1)} = 0 \), thus \(E^T \beta B = A^T \beta B \) and \(E^{(1)} = A^{(1)} \). From Theorem 2.4, \(S(E, B) = S(A, B) \), \(a_{ij} \) is a LPE of \(A \) within \([0, b_i] \).

Moreover, when \(c_j < 1 \), for above the matrix \(E \), if \(e_{ij} = b_i \), then \(e_{ij} \beta b_i = 1 \) and \(e_{ij}^{(1)} = 0 \). Thus \(E^T \beta B = A^T \beta B \) and \(E^{(1)} = A^{(1)} \). \(a_{ij} \) is a LCPE of \(A \) within \([0, b_i] \).

When \(c_j = 1 \), \(e_{ij}^{(1)} = b_i < 1 \), it implies that \(E^{(1)} \neq A^{(1)} \), so \(S(E, B) \neq S(A, B) \), \(a_{ij} \) is not a LCPE of \(A \) within \([0, b_i] \).

Theorem 3.2. Given the equation (1). If \(a_{ij} b_i \) and \(a_{ij}^{(1)} = 0 \), then \(a_{ij} \) is a LCPE of within \([0, b_i] \).

Proof. Assume that \(a_{ij} b_i \) and \(a_{ij}^{(1)} = 0 \), then \(a_{ij} c_j < b_i \), so \(c_j < 1 \). We replace \(a_{ij} \) by \(e_{ij} \left(e_{ij} \in [0, b_i] \right) \) and let the other elements be invariable, so we get a new matrix \(E = (e_{ij}) \). Then \(e_{ij} \beta b_i = a_{ij} \beta b_i = 1 \) and \(e_{ij}^{(1)} = a_{ij}^{(1)} = 0 \), thus
$ET\beta B = A^T\beta B$ and $E^{(1)} = A^{(1)}$, it implies that $S(E, B) = S(A, B)$, a_{ij} is a LCPE of A within $[0, b_i]$. \hfill \Box

Theorem 3.3. Given the equation (1) and assume that $a_{ij} > b_i$ and $a_{ij}^{(1)} = 0$, then a_{ij} is a LCMPE of A within $[b_i, b_i/c_j]$.

Proof. Assume that $a_{ij} > b_i$ and $a_{ij}^{(1)} = 0$, then $b_i/a_{ij} = a_{ij}\beta b_i > \bigwedge_{t=1}^{m} (a_{tij}\beta b_i) = c_j$. We replace a_{ij} by $e_{ij}([b_i, b_i/c_j])$, and let the other elements be invariable, so we get a new matrix $E = (e_{ij})$. Then $b_i/e_{ij} \in (c_j, 1]$, $b_i/e_{ij} = e_{ij}\beta b_i > c_j$.

Hence

$$c_j = \bigwedge_{t=1}^{m} a_{ij}\beta b_t = (\bigwedge_{t\neq i} a_{tij}\beta b_t) \bigwedge_{t\neq i} (a_{tij}\beta b_t) = \bigwedge_{t\neq i} a_{tij}\beta b_t$$

$$= (\bigwedge_{t\neq i} a_{tij}\beta b_t) \bigwedge_{t\neq i} (e_{ij}\beta b_t) = (\bigwedge_{t\neq i} e_{tij}\beta b_t) \bigwedge_{t\neq i} (e_{tij}\beta b_t) = \bigwedge_{t=1}^{m} e_{tij}\beta b_t.$$

So $A^T\beta B = ET\beta B$. Moreover, $e^{(1)}_{ij} = 0 = a^{(1)}_{ij}$, $E^{(1)} = A^{(1)}$, by Theorem 2.4, $S(E, B) = S(A, B)$, a_{ij} is a LCMPE of A within $[b_i, b_i/c_j]$. \hfill \Box

Theorem 3.4. Given the equation (1), if $a_{ij}^{(1)} \neq 0$, then a_{ij} is an EWP of A.

Proof. Suppose $a_{ij}^{(1)} \neq 0$, then $a_{ij}c_j = b_i$,

$$c_j = b_i/a_{ij} = a_{ij}\beta b_i = (\bigwedge_{t\neq i} a_{tij}\beta b_t) \bigwedge_{t\neq i} (a_{tij}\beta b_t),$$

thus $a_{ij}\beta b_i = (\bigwedge_{t\neq i} a_{tij}\beta b_t)$. If we replace a_{ij} by $e_{ij}(e_{ij} \in [0, b_i] \cup (b_i/c_j, 1])$, and let the other elements be invariable, so we get a new matrix $E = (e_{ij})$. Then $e^{(1)}_{ij} = 0 \neq e^{(1)}_{ij}$, $E^{(1)} \neq A^{(1)}$ it implies that $S(E, B) \neq S(A, B)$.

Thus a_{ij} is an EWP of A. \hfill \Box

Corollary 3.5. Let $a_{ij}^{(1)} \neq 0$ and a_{ij} be an EWP of A, if a_{ij} perturbs within $[0, b_i]$ and let the other elements be invariable, so we get a new matrix E. Then $S(E, B) \subset S(A, B)$.

Corollary 3.6. Let $a_{ij}^{(1)} \neq 0$ and a_{ij} be an EWP of A, if a_{ij} perturbs within $(b_i/c_j, 1]$ and let the other elements are invariable, so we get a new matrix E. Then $S(E, B) \subset S(A, B)$.

Theorem 3.7. Given the equation (1), A is a fuzzy matrix without perturbation about B if and only if $A = A^{(1)}$.

Acknowledgements

This project is supported by the NNSF of P.R. China (60364001) and NSF of Henan (200310011).

References

