ON THE NON-DEFECTIVITY AND
NON WEAK-DEFECTIVITY OF SEGRE-VERONESE
EMBEDDINGS OF PRODUCTS OF $\mathbb{P}^n \times \mathbb{P}^m$

E. Ballico
Department of Mathematics
University of Trento
380 50 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Fix integers n, m, d, t such that $n \geq m \geq 1$, $n \geq 2$, $d \geq n!(n+1) - n$ and $t \geq mn + 1$. Here we prove that the Segre-Veronese embedding of $\mathbb{P}^n \times \mathbb{P}^m$ induced by the complete linear system $|\mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^m}|$ is neither defective nor weakly defective.

AMS Subject Classification: 14N05
Key Words: secant variety, Segre embedding, Veronese embedding, Horace Lemma, zero-dimensional scheme

1. Segre-Veronese Embeddings of $\mathbb{P}^n \times \mathbb{P}^m$

This short note is a continuation of [1]. More precisely, we will make “one more step” in the proof of [1], Theorem 1.1, to obtain the following result.

Theorem 1. Fix integers n, m, d, t, k such that $k > 0$, $n \geq m \geq 1$, $n \geq 2$, $d \geq n!(n+1) - n$ and $t \geq mn + 1$. Let $Z \subset \mathbb{P}^n \times \mathbb{P}^m$ be a general union of k double points. If $k(n + m + 1) \leq \binom{n+d}{n} \cdot \binom{m+t}{m}$, then $h^1(\mathbb{P}^n \times \mathbb{P}^m, \mathcal{I}_Z(d, t)) = 0$. If $k(n + m + 1) \geq \binom{n+d}{n} \cdot \binom{m+t}{m}$, then $h^1(\mathbb{P}^n \times \mathbb{P}^m, \mathcal{I}_Z(d, t)) = 0$.
The characteristic free part of Terracini’s Lemma immediately shows that Theorem 1 implies the following result.

Corollary 1. Fix integers \(n, m, d, t \) such that \(n \geq m \geq 1, n \geq 2, d \geq n!(n+1) - n \) and \(t \geq mn + 1 \). Then the Segre-Veronese embedding of \(\mathbb{P}^n \times \mathbb{P}^m \) induced by the complete linear system \(|\mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^m}| \) is not defective.

Using Theorem 1 instead of [1], Theorem 1.1, the proof of [1], Theorem 3, gives verbatim the following result.

Theorem 2. Fix integers \(n, m, d, t \) such that \(n \geq m \geq 1, n \geq 2, d \geq n!(n+1) - n \) and \(t \geq mn + 1 \). Then the Segre-Veronese embedding of \(\mathbb{P}^n \times \mathbb{P}^m \) induced by the complete linear system \(|\mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^m}| \) is not weakly defective, i.e. for all integers \(k > 0 \) such that \(k(n + m + 1) < \binom{n+d}{n} \cdot \binom{m+t}{m} \) and any general \(S \subset \mathbb{P}^n \times \mathbb{P}^m \) such that \(\sharp(S) \) a general hypersurface \(F \in |\mathcal{O}_{\mathbb{P}^n \times \mathbb{P}^m}| \) singular at each point of \(S \) is smooth outside \(S \) and it has an ordinary quadratic singularity at each point of \(S \).

We work over an algebraically closed field \(\mathbb{K} \) with \(\text{char}(\mathbb{K}) = 0 \). The proof of Theorem 1 and Corollary 1 is characteristic free, while our proof of Theorem 2 heavily depends from the characteristic zero assumption: a key tool is [2], Theorem 1.4. In the proofs of [1], Theorem 1 and Theorem 2, we used an idea of Mella (see [3], proof of Theorem 4.1).

For all integer \(n > 0, m \geq 0, d \geq 0 \) and \(t \geq 0 \) define the integers \(a_{n,m,d,t} \) and \(b_{n,m,d,t} \) by the relations:

\[
(n + m + 1)a_{n,m,d,t} + b_{n,m,d,t} = \binom{n+d}{n} \cdot \binom{m+t}{m},
\]

\[0 \leq b_{n,m,d,t}n + m. \quad (1)\]

Proof of Theorem 1. Set \(M := \mathbb{P}^n \times \mathbb{P}^m \). Fix a hyperplane \(H \subset \mathbb{P}^m \) and set \(E := \mathbb{P}^n \times H \cong \mathbb{P}^n \times \mathbb{P}^{m-1} \) (seen as a hypersurface of multidegree \((0,1)\) of \(M \)). By [1], Theorem 1.1, we may assume \(m \geq 2 \). By induction on \(m \) we may also assume that the result is true for \(\mathbb{P}^n \times \mathbb{P}^{m-1} \). Subtracting the equation in (1) for the integer \(t' := t - 1 \) from the same equation for the integer \(t \) and using the same equation for the integer \(m' := m - 1 \) we obtain

\[
(n + m + 1)(a_{n,m,d,t} - a_{n,m,d,t-1}) + b_{n,m,d,t} - b_{n,m,d,t-1} = (n + m)a_{n,m-1,d,t} + b_{n,m-1,d,t}. \quad (2)
\]

Since \(b_{n,m,d,t} \leq n + m \), \(b_{n,m,d,t-1} \leq n + m \) and \(b_{n,m-1,d,t} \leq n + m - 1 \), from (2) we obtain \(a_{n,m-1,d,t} \geq (n + m)b_{n,m-1,d,t} + a_{n,m,d,t} - a_{n,m,d,t-1} \). This
is the inequality need to make the inductive proof of [1], Theorem 1.1, (from $m' := 0$ to $m'' := m - 1$) works in our set-up from the integer $m' := m - 1$ to the integer $m'' := m$, using as intermediate step Lemma 1 below instead of Step (a) and Step (b) of the proof of [1], Theorem 1, whose use shows why passing from $m' := m - 1$ to $m'' := m - 1$ we increase by n our assumed lower bound for t.

\textcolor{red}{\textbf{Lemma 1.}} \ Fix integers n, m, d, t, k such that $k > 0$, $n \geq m \geq 1$, $n \geq 2$, $d \geq n!(n+1) - n$ and $t \leq mn$. Let $Z \subset \mathbb{P}^n \times \mathbb{P}^m$ be a general union of k double points. If $(k + nm + 1 - t)(n + m + 1) \leq \binom{n+d}{n} \cdot \binom{m+t}{m}$, then $h^1(\mathbb{P}^n \times \mathbb{P}^m, \mathcal{I}_Z(d, t)) = 0$. If $(k + t - mn - 1)(n + m + 1) \geq \binom{n+d}{n} \cdot \binom{m+t}{m}$, then $h^1(\mathbb{P}^n \times \mathbb{P}^m, \mathcal{I}_Z(d, t)) = 0$.

\textbf{Acknowledgements}

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

\textbf{References}

[1] E. Ballico, On the non-defectivity and non weak-defectivity of Segre-
Veronese embeddings of products of projective spaces, \textit{Preprint}.

