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Abstract: This paper discusses packet scheduling algorithms similar to the
ones used in modern IP routers. Two new scheduling techniques (schemes)
are proposed. We describe them formally and then prove the conditions under
which they keep their stability property, meaning that they do not experience
packet loss even under the most severe traffic conditions. It is shown that
every packet scheduling algorithm that follows any of the two proposed schemes
remains stable under any admissible traffic pattern.
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1. Introduction

One of the most important issues in today’s networking is the delay problem.
The time it takes for a packet to travel through Internet and reach its desti-
nation can sometimes make executing an application unfeasible. This is very
common especially in multimedia applications.
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To deal with this problem, there are two general approaches. The first one
suggests to constantly enhance networks with more bandwidth. This could pro-
vide more resources to the average user, thus improving network performance.
The disadvantage of this approach is mainly its high cost and the difficulty of
changing the existing network infrastructure.

On the other hand, there is the approach that seeks for the optimization of
the current infrastructure. This will mean better use of the existing network
resources. To achieve this, new algorithms have to be introduced. This paper
discusses a set of such algorithms that deal with the scheduling of packets within
the main network relay, the router. We formally prove that both scheduling
schemes remain stable, i.e. they are not losing packets under all admissible
traffic loads.

A similar study was performed in [2]. The difference is that now we deal
with packets instead of cells. The importance of this variation is immense as
currently in Internet there is a huge number of IP routers that operate using
IP datagrams and do not split packets into cells.

A brief description of an Input-Queue (IQ) switch is given in Section 2.
We also propose a variation on the operation of the device, so that packets are
accommodated instead of cells. After defining the notations used, and providing
the basic definitions of our study in Section 3 and Section 4, we examine the
stability properties of our scheduling schemes. Section 5 ends with the main
result of the paper.

2. IQ Switches

The logical architecture for an IQ packet switch is shown in Figure 1. At each
input there is a segmentation of the incoming packet into cells. The switch
operates in store-and-forward mode, is equipped with enough memory to store
a maximum-size packet, and starts the segmentation process only after the
complete reception of the packet. The cells resulting from the segmentation are
transferred to the cell-switch input. The capacity of each input queue at the
cell-switch is finite, hence losses can occur. We assume that the entire packet is
discarded if the input queue of the cell-switch does not have enough free space
to store all the cells deriving from the segmentation of the packet when the first
of these cells hits the queue. This is clearly a pessimistic assumption, but has
the advantage of case of implementation, and of avoiding the transmission of
incomplete packet fractions through the switch.

We consider a switch with K inputs and K outputs. We also assume for
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Figure 1: Input Queue (IQ) switch

simplicity that all input and output lines run at the same speed. Each input
manages one queue for each output, hence a total of K × K = K2 queues
are present. Each queue can store up to Qmax cells and excess packets are
dropped. This queue separation technique avoids performance degradations
due to “head-of-the-line blocking” [5], and is called Virtual Output Queuing
(VOQ) or Destination Queuing [1, 7].

The cell-based switching fabric transfers cells from input to output queues,
according to a scheduling algorithm. Then, packets (i.e., IP datagrams) are
reassembled. In general, cells belonging to the same packet are contiguous in
the input queue of the internal IQ cell-switch. By using packet scheduling mode
(described in the following section) cells belonging to the same packet are kept
contiguous also in the output queue, and the reassembly modules are no longer
necessary (or at most one per output is used). Once a packet is complete, it
is logically added to an global output packet First-In-First-Out (FIFO) queue,
from which packets are sequentially transmitted onto the output line. Note
that the queue’s functionality is typically implemented by imposing a sequential
transfer from the suitable output to the output line of all the cells belonging to
the same reassembled packet.

2.1. Packet Scheduling Mode

Packet scheduling mode algorithms introduce the additional constraint of keep-
ing the cells belonging to the same packet contiguous also in output queues.
To achieve this, the scheduling algorithm must enforce that, once the transfer
through the switching fabric of the first cell of a packet has started towards the
corresponding output port, no cells belonging to other packets can be trans-
ferred to that output, i.e., when an input is enabled to transmit the first cell
of a packet comprising of m cells, the input/output match must persist for the
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following m− 1 slots.

We propose to extend the above mentioned IQ architecture to operate in
packet scheduling mode. The only complexity increase in the implementation
is to add a Boolean variable at each input to flag over-prioritized connections.

3. Notations

The notation used in the proofs is the following:

— Let K is the number of switch ports and Q is the number of queues
(input and output). Clearly, Q = K2.

— Let t and ν are two discrete time variables.

— Let Bt be a vector showing the number of cells currently waiting in the
system at time t: it has K2 elements and the i-th element is the number of cells
currently waiting in the i-th queue.

— Let At be a vector showing the arrivals at time t: it has K2 elements, it
is a binary vector and a 1 in the i-th element implies the arrival of a cell at the
i-th queue at time t.

— Let ∆t be a vector showing the departures at time t: it has K2 elements,
it is a binary vector and a 1 in the i-th element implies the departure of a cell
from the i-th queue at time t. It also corresponds to a matching ∆ between
input and output ports.

— Let Bt+1 = [Bt +At − ∆t]
+ be the evolution of the system. We assume

that first the arrival take place and then cell depart from the queues.

— E(Z) is the expected value of the random variable Z.

4. Theoretical Analysis

In the literature, there exists a number of analytical approaches for studying
IQ switches. Usually, an IQ switch is modelled as a controlled queueing system
and therefore it can be studied using stochastic modelling techniques.

The major component of a queuing system of this kind is its stability. A
queueing system is stable, when there is no queue growing to infinity, assuming
that the arrival process is “admissible”.

Definition 1. We call Aχψ the arrival process from port χ to port ψ
and λχψ the average arrival rate. The aggregation of all process is A =
{Aχ, 1 ≤ χ ≤ K}. An arrival process A is considered admissible when no
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port is overloaded, i.e.:

K∑

χ=1

λχψ < 1, 1 ≤ ψ ≤ K ,

K∑

ψ=1

λχψ < 1, 1 ≤ χ ≤ K .

To prove that a queuing system is stable, a special function, called the
“Lyapunov” function, is used. In [6], there is also an analysis for estimating
delays using this method.

5. Stability of Packet Scheduling Mode

We start with two well-known definitions of the stability of controlled queueing
systems.

Definition 2. A system of queues is stable, or achieves 100% throughput,
if

lim
t→∞

Bt

t
= lim

t→∞

1

t

t−1∑

χ=0

(Ax − ∆x) = 0,

with probability 1.

Definition 3. A system of queues is strongly stable if:

lim
t→∞

supE||Bt|| <∞ .

Consider an IQ packet switch, and suppose that all input packet lengths are
multiples of some unit length called UL (UL may correspond to a bit, a byte, or
a cell). Consider the system of discrete-time queues comprising all input queues
of the packet switch. The discrete time unit corresponds to a continuous time
increment equivalent to UL.

We assume that customers correspond to cells to be transferred from input
to output ports. Since we consider an IQ switch, each element δνi of the de-
parture vector ∆ν , can only assume the values 0 and 1 ∀i and ∀ν. The arrival
of a packet corresponds to the arrival of a group of customers, whose cardinal-
ity equals the packet length in UL units. Therefore, αin can be larger than 1.
However, if the traffic is admissible, E[αin] ≤ 1,∀i.
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Let tν ∈ N
+ be a non-defective sequence of regeneration instants (or stop-

ping times) for the evolution of the system of queues, i.e., for any tν , the evo-
lution of the system following tν is conditionally independent of the evolution
of the system before tν given the state Y (tν); moreover, ζν = tν+1 − tν .

Definition 4. An IQ packet switch follows a renewal MWM scheme if at
each stopping time tν a new switching configuration is selected according to the
outcome of a Maximum Weight Matching (MWM) algorithm whose weights are
proportional to queue lengths, and the switching configuration is kept constant
until tν+1.

Definition 5. An IQ packet switch follows an incremental MWM scheme
if at each stopping time tν a new matching is selected according to the outcome
of a MWM algorithm whose weights are proportional to queue lengths. Between
two consecutive stopping times tν and tν+1, partial updates of the switching
configuration are allowed. These reconfigurations are performed according to
the outcome of a MWM algorithm whose weights are proportional to queue
lengths, operating on a subset of input and output ports.

Lemma 1. An IQ packet switch following a renewal MWM scheme is
stable under any admissible i.i.d. input traffic pattern Aν such that E[AνA

T
ν ] <

∞,∀ν.

Proof. The evolution of the system of discrete-time queues in the IQ packet
switch is represented by a Discrete Time Markov Chain whose state is defined
by the vector of queue lengths Btν ; between consecutive stopping times, the
system evolution satisfies the following equation:

Btν+1
= Btν +

ζν−1∑

i=0

(Atν+i∆tν+i) .

Note that all ∆tν+i, i < ζν refer to the same matching; however, they need
not be all equal, since some queue scheduled for transmission at time tν may
become empty before the next stopping time. If this happens, no packet can
be transferred from empty queues.

By using the Lyapunov function V (Btν ) = BtνB
T
tν :

E[V (Btν+1
) | Btν ] − V (Btν )

= E[2

ζν−1∑

i=0

(Atν+i∆tν+i)B
T
tν +

ζν−1∑

i=0

(Atν+i∆tν+i)

ζν−1∑

i=0

(Atν+i∆tν+i)
T ] .

Thus, under the assumption that E[AνA
T
ν ] is finite (which corresponds to as-

suming finite packet length variances), since also E[∆tν+i
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∆T
tν+i

] is finite:

lim
‖Bν‖→∞

E[V (Btν+1
)|Btν ]−V (Btν )

‖Btν ‖
= lim

‖Bν‖→∞

2E[
ζν−1

P

i=0

(Atν+i−∆tν+i)B
T
tν

]

‖Btν ‖
.

Define now ∆δ =
ζν−1∑
i=0

∆tν+i − ζν∆tν ; as noted before, this difference is due

to the fact that some queues may become empty before changes in the switch
configuration. Thus:

E[
ζν−1∑
i=0

(Atν+i − ∆tν+i)B
T
tν ]

‖ Btν ‖
=

E[
ζν−1∑
i=0

(Atν+iB
T
tν − ζν∆tνB

T
tν − ∆δB

T
tν )]

‖ Btν ‖
.

Wald’s Lemma [8] can be applied, since tν is a sequence of stopping times,
therefore obtaining:

E[
ζν−1

P

i=0

(Atν+iB
T
tν

−ζν∆tνB
T
tν
−∆δB

T
tν

)]

‖Btν ‖
=

E[ζν ](E[Aν ]−∆tν )BT
tν

−E[∆δ]B
T
tν

‖Btν ‖
.

Note that E[∆δ]B
T
tν

≥ −QE[ζ2
ν ], since at most Q components of ∆δ can be

non-null, no component of ∆δ can exceed the value ζν , and, finally, a component
of ∆δ can be non-null only if the corresponding queue length at time tν is smaller
than ζν . Moreover, for each admissible load and non-null queue length vector,
(E[Aν ] − ∆tν )BT

tν < 0 as proved in [8]. Thus:

lim
‖Bν‖→∞

E[V (Btν+1
) | Btν ] − V (Btν )

‖ Btν ‖

= lim
‖Bν‖→∞

E[ζν ](E[A] − ∆tν )BT
tν − 2E[∆δ ]B

T
tν

‖ Btν ‖

= 2E[ζν ] lim
‖Bν‖→∞

(E[A] − ∆tν )BT
tν

‖ Btν ‖
< −E[ζν ]ǫ . �

Lemma 2. An IQ packet switch following an incremental MWM scheme
is stable under any admissible i.i.d. input traffic pattern such that E[AνA

T
ν ] <

∞,∀ν.

Proof. The proof can be easily obtained by applying the same Lyapunov
function used in Lemma 1.
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Consider an IQ packet switch with a given packet arrival process running
an incremental MWM scheme with stopping times {tν}. A particular renewal
MWM scheme can be defined under the same arrival process and with the same
set of stopping times. The latter scheme is stable due to Lemma 1.

Since for the two schemes we have the same set of stopping times, we get:

ζν−1∑

i=0

∆Inc
tν+iBtν+i ≥

ζν−1∑

i=0

∆tν+iBtν+i ,

where ∆Inc
tν+i is the departure vector at time tν + i for the incremental MWM

scheme, and ∆tν+i is the departure vector for the renewal MWM scheme.

Definition 6. An IQ packet switch follows a packet MWM scheme if a
new switching configuration is selected according to a MWM algorithm, whose
weights are proportional to queue lengths, whenever either:

— all packet transmissions end at the same time, or

— all the queues selected for transfer become empty.

Definition 7. An IQ packet switch follows a packet incremental MWM
scheme if:

— whenever either all packet transmissions end at the same time, or all
the queues selected for transfer become empty, a new switching configuration
is selected according to a MWM algorithm, whose weights are proportional to
queue lengths, as in a packet MWM scheme;

— whenever some queues selected for transfer become idle (i.e., either they
are empty, or packet transmissions end) a partial update of the switching con-
figuration is allowed, according to an MWM algorithm among idle ports, whose
weights are proportional to queue lengths.

Lemma 3. Consider an IQ packet switch, following either a packet MWM
scheme, or a packet incremental MWM scheme, whose input traffic is formed
by variable length packets with i.i.d. random size. Packet sizes are expressed
in integer multiples of UL. Assume that the average packet size is Λ and the
packet size variance is σ2 (both being finite). Assume that the transmission
of packets from all queues selected by the MWM algorithm starts at the same
time with exactly the same rate. Consider the sequence of instants tν at which
either the transmission of all the packets at the head of the selected queues
ends at the same time, or all selected queues become empty. The sequence of
stopping times tν is non-defective, i.e. ζν = tν+1 − tν , are such that E[ζν ] <∞
and E[ζ2

ν ] <∞.
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Proof. For simplicity, assume that the packet length distributions at all
queues are aperiodic, i.e., the maximum common divisor of all possible packet
lengths expressed in UL is equal to 1. The proof can be easily extended to the
case of periodicity. For simplicity we consider here a switch operating according
to a packet MWM scheme, but the the proof can be easily extended for a switch
operating according to a packet incremental MWM scheme.

We suppose that switch queues have infinite length, so that we neglect the
probability that switch queues become empty near traffic saturation; thus, we
obtain an overestimate of E[ζν ] and E[ζ2

ν ], since tν are defined by only the
sequence of instants in which transmission of all the packets at the head of the
selected queues ends at the same time.

Each sequence of instants at which transmissions of packets end at queue
k forms a discrete-time aperiodic renewal point process, thanks to the inde-
pendence of packet lengths. Thus, for Blackwell Theorem, see [8], the average
number E[fκν ] of packets whose transmissions end at queue at time satisfies the
following equation:

lim
ν→∞

E[fκν ] =
1

Λ
. (1)

However, no more than one packet transmission can end at each queue
at each time (assuming no packet is of length zero); thus E[fκν ] equals the
probability that a packet ends:

E[fκν ] =Pr{transmission ends at time ν and at queue κ}.

Limit (1) implies that, for any integer m > 1, there exists an instant νκ
such that, ∀ν > νκ:

Pr{transmission ends at time ν and at queue κ} > 1
mΛ > 0.

The probability that at instant ν the transmission of packets at the head
of all queues selected for transmission (be their number NS) ends can be easily
computed, since no correlation exists among queues behavior. Thus, given m,
for ν > νκ,∀κ:

Pr{all transmissions end at time ν} =
NS∏
k=1

Pr{transmission ends at time ν and

at queue κ} ≥
NS∏
k=1

1
mΛ = 1

(mΛ)NS
> 0.

Consider now the sequence of instants tν at which either all packet transmis-
sions end, or selected queues become empty. The sequence tν forms a renewal
process; thus Blackwell’s Theorem applies:
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Pr{all transmissions end at time ν} = E[fν ] = 1
E[ζν ] ,

where E[fν ] is the average number of regenerations at time n; since

Pr{all transmissions end at time ν} > 0,

we obtain E[ζν ] <∞.
To prove that also E[ζ2

ν ] <∞, consider all packets transmitted from queue
k between two subsequent regenerations; let W be the number of such packets,
and Λj be their lengths expressed in UL. We can write:

E[ζ2
ν ] − E2[ζν ] = E[(

W∑

j=1

(Λj − E[Λj ]))
2]

= E[

W∑

j=1

(Λ2
j −E2[Λj ])] + E[

W∑

j=1

W∑

i=1,i6=j

(ΛjΛi − E[ΛjΛi])] .

The second term in the sum can be easily shown to be null by conditioning
on the value of W ; it can thus be eliminated. As a consequence:

E[ζ2
ν ] − E2[ζν ] = E[

W∑
j=1

Λ2
j ] −

W∑
j=1

E2[Λj ].

and by Wald’s Lemma, since regeneration points are stopping times for the
sequence Λj :

E[ζ2
ν ] − E2[ζν ] = E[W ]E[Λ2] − E[W ]E2[Λj ] = E[W ]σ2.

Being E[W ] finite (otherwise E[ζν ] would be infinite), it results E[ζ2
ν ] <∞.

We can now state our main result.

Theorem 1. Any IQ packet switch following either a packet MWM scheme
or a packet incremental MWM scheme is strongly stable, provided that:

— the input traffic is admissible;

— the input traffic is formed by variable length packets with i.i.d. random
size having finite average and variance;

— the transmission of packets from all queues selected by the MWM algo-
rithm starts at the same time with the same rate.

Proof. The proof is quite straightforward from Lemma 1 (for packet MWM
schemes), or Lemma 2 (for packet incremental MWM schemes), and Lemma 3
since the assumptions of Theorem 1 satisfy the conditions under which Lemma
3 holds.
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6. Conclusions

In this paper, we have examined scheduling in packet switches. We proposed
two new schemes in the area and formally proved that they are stable, thus
providing 100% throughput under all admissible traffic patterns. The base of
our approach was a similar study performed for cell switches.

To strengthen the results of this paper even more, we conducted a series of
simulations that tested the schemes. We developed a network simulator, using
MODSIM III, a special programming language for simulations. The simulator
is described in detail in [4]. Some of the results are presented in [3]. Under
all scenarios tested, the schemes proven to have comparable results with other
algorithms in the area and also remained stable, especially in situations, where
most other schemes were loosing packets.
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