SUPPORTS OF IDEMPOTENTS AND THE LIMITS OF AVERAGED CONVOLUTION SEQUENCES

A.K. Gaur
Department of Mathematics
Duquesne University
600 Forbes Avenue, Pittsburgh, PA 15282, USA
e-mail: gaur@mathcs.duq.edu

Abstract: In this note the supports of idempotents and the limits of averaged convolution sequences in the set of all Banach-valued probability measures on a compact semitopological semigroup are discussed.

AMS Subject Classification: 46H05, 16G10, 28B10, 28C10
Key Words: semitopological group, probability measures, Banach-valued measures

1. Introduction

A semitopological group is a group G endowed with a topology such that, for each a in G, the translations $x \to ax$ and $x \to xa$ are continuous on G, and such that the symmetry $x \to x^{-1}$ is continuous on G. A semitopological semigroup is a semitopological group without the continuity condition on symmetry $x \to x^{-1}$. For details on semitopological groups, see Bourbaki [1]. Let G be a compact semitopological semigroup. We denote by $P(G)$ the set of nonnegative and normalized Borel measures on G. If $P(G)$ is endowed with the weak star topology then it is a compact semitopological semigroup, where the multiplication is defined by convolution.

Let A be a unital Banach algebra. We write $C(G, A)$ as the algebra of all continuous functions from G to A. Let $C(G)$ denote the algebra of continuous functions from G to the set of complex numbers.

Received: January 31, 2005 © 2005, Academic Publications Ltd.
For every \(x \) in \(G \) and for all functions \(f \) in \(C(G) \), we define \(f^*(x) = (f(x))^* \). A linear operator \(T : C(G) \to A \) is positive if for all \(f \) in \(C(G) \), \(T(f^*) \) is in \(A \). Let \(\sigma(G) \) be the \(\sigma \)-algebra of all Borel subsets of \(G \). A partition of \(G \) in a finite (infinite) collection of pairwise disjoint clopen subsets of \(G \), which cover \(G \). We denote by \(\pi(G) \), the partition of \(G \). An operator \(T \) is weakly compact if \(|
abla| \) maps bounded sets into weakly sequentially compact sets. If \(T \) is weakly compact then the representing measure \(m \) of \(T \) has the value in \(A \). The set of all weakly compact measures \(m : \sigma(G) \to A \) is written as \(W_A \). The positivity of an operator \(T \) guarantees that \(m \) is positive.

Definition 1.1. For \(B \) in \(\sigma(G) \) we define the variation of \(m \) as follows:
\[
\nu(m)B = \sup\{\Sigma||m(\pi_i)|| : \{\pi_i\} \text{ is in } \pi(B)\}.
\]
Let \(\mu \) and \(\eta \) be weakly compact measures. We define the convolution \(\mu \ast \eta \) as follows:
\[
\int f \, d\mu \ast \eta = \int d\mu(x) \int f(xy) \, d\eta(y), \quad f \in C(G), \quad x, y \in G
\]

Definition 1.2. Let \(W_A \) be a subset of \(L(C(G), A) \) endowed with the weak operator topology. The support of a measure \(\mu \) is defined as the complement of \(\bigcup\{U : U \text{ is open and } \mu(U) = 0\} \) and is denoted by \(\text{supp } \mu \), see Conway [3].

A measure \(m : \sigma(G) \to A \) in \(W_A \) is called a Banach-valued probability measure on \(G \), if \(m > 0 \) and \(V(m)(G) = 1 \). If \(\Omega \) denotes the set of all Banach-valued probability measures, then it is a convex set in \(W_A \). Further, it is plain to see if \(A \) is the set of complex numbers then \(W_A \) is the algebra of all bounded regular Borel measures. For more information on these measures, refer to Gaur [5].

Definition 1.3. Let \(\Omega_0 \) be a subsemigroup of \(\Omega \). Then the \(\text{supp } \Omega_0 \) is the closure of \(\bigcup\{\text{supp } \mu : \mu \in \Omega_0\} \). It should be noted that if \(\Omega_0(\mu) = \{\mu, \mu^2, \mu^3, \ldots\} \) then \(\text{supp } \Omega_0 \) is the closed semigroup generated by \(\text{supp } \mu \).

Theorem 1.1. For \(m \) in \(W_A \) there exists \(m_\Omega \in \Omega \) with \(m_\Omega \to m \) in the strong operator topology such that if \(m_\Omega \) is positive then \(m \) is positive.

Proof. From Corollary 5, p. 477 of Dunford [4], the set \(\Omega \) has the same closure in the weak operator topology as it does in the strong operator topology.

Let \(m \) be in \(W_A \) such that there exists \(m_\Omega \) in \(\Omega \) with \(m_\Omega \to m \) in the strong operator topology. Let \(f \) be in \(C(G) \). Then \(m_\Omega(f) = m(f) \). In this case \(\nu(m)(B) = 1 = ||m(B)|| \) for \(B \) in \(\sigma(G) \) (see Definition 1.1). Since \(m_\Omega(ff^*) \to m(ff^*) \) for every \(f \) in \(C(G) \) and \(K(A) \) is closed (\(K(A) \) is the positive cone of \(A \)). Hence, the positivity of \(m_\Omega \) implies \(m \) is positive. \(\square \)
Remark 1.1. The above theorem basically establishes that the set Ω is closed in W_A endowed with weak operator topology.

Theorem 1.2. The set Ω is a compact semitopological semigroup.

Proof. From Proposition 1 in Gaur [5] the convolution of probability measures is continuous in Ω.

Let W_A be a subset of W_{A^*}. Then by Brooks [2] W_{A^*} is a subset of $L[C(G, A^*), \mathbb{C}]$. We note that \mathbb{C} is reflexive and hence the closed unit sphere of $L[C(G, A^*), \mathbb{C}]$ is compact in the weak operator topology. This in fact follows from p. 512 in Dunford [4].

2. The Limit Theorem

In the following limit theorem it is shown that the limit of an averaged convolution sequence in Ω is an idempotent in Ω.

Theorem 2.1. If $x_n = \sum_{i=1}^{n} \frac{\mu_i}{n}$, where μ belongs to Ω, then the sequence $\{x_n\}$ converges to $e(\mu)$ such that $e(\mu)\mu = \mu e(\mu) = e(\mu)$ and $e(\mu)$ is an idempotent in Ω. Also, $\text{supp} e(\mu)$ is a minimal ideal of $\text{supp} \Omega_0$.

Proof. The set Ω is compact and hence the sequence $\{x_n\}$ has a cluster point, say x by Lemma 9, p. 29 in Dunford [4]. First, we will show that the cluster point x of the sequence $\{x_n\}$ is unique and idempotent.

Consider $(\mu - 1)x_n$. Then

$$(\mu - 1)x_n = \frac{1}{n}[(\mu - 1) \sum_{i=1}^{n} \mu_i^i]$$

$$= \frac{1}{n}(\mu^1 + \mu^2 + \ldots + \mu^{n+1} - \mu^2 - \ldots \mu^n) = \frac{1}{n}(\mu^{n+1} - \mu).$$

Let f be an element of $C(G)$ and a^* is in A^*. Then

$$|(\frac{a^*\mu^{n+1} - a^*\mu}{n})(f)| = |\frac{a^*}{n}(\mu^{n+1}(f) - \mu(f))| \leq \frac{2}{n}|a^*||.$$

This shows that $(\mu - 1)x_n = \frac{\mu^{n+1} - \mu}{n}$ converges to the zero measure in the weak operator topology. Therefore, $\mu x = x = x \mu$. In fact, we have $x_n x = x = x_n$ and $x^2 = x$.

\[\square\]
Now we prove the uniqueness of x. Let y be any other cluster point of $\{x_n\}$. Then $xy = x = yx$ and $yx = xy = y$. This shows that $x = y$. Hence $x_n \to x$. If we assume $x = e(\mu)$ then $\mu e(\mu) = e(\mu)\mu = e(\mu)$ since $e(\mu)$ belongs to the closed convex hull of $\Omega_0(\mu)$, it follows that $\text{supp } e(\mu)$ is a subset of $\text{supp } \Omega_0$. We also remark that $\Omega_0 = \text{supp } \text{co}[\Omega_0(\mu)] = \text{supp } \overline{\text{co}}[\Omega_0(\mu)]$. Let $\mu \in \text{supp } e(\mu) = P$ and $\text{supp } \mu = Q$. Then by Lemma 1 in Pym [6] and Theorem 1 in Gaur [5], we have $PQ^n = Q^nP = P$, for all n. This shows that P is an ideal of $\text{supp } \Omega_0$ which is also minimal by Remark 2 in Gaur [5].

References

