INTUITIONISTIC H-FUZZY REFLEXIVE RELATIONS

Kul Hur1, 5, Hee Won Kang2, Jun Hui Kim3

1, 3Division of Mathematics and Informational Statistics
Institute of Basic Natural Science
Wonkwang University Iksan
Chonbuk, 570-749, KOREA
1e-mail: kulhur@wonkwang.ac.kr
3e-mail: junhikim@wonkwang.ac.kr
2Department of Mathematical Education
Woosuk University
Hujong-Ri Samrae-Eup, Wanju-kun Chonbuk, 565-701, KOREA
e-mail: khwon@woosuk.ac.kr

Abstract: We introduce the subcategory $\text{IRel}_R(H)$ of $\text{IRel}(H)$ consisting of intuitionistic H-fuzzy reflexive relational space on sets and we study structures of $\text{IRel}_R(H)$ in a viewpoint of the topological universe introduce by Nel. We show that $\text{IRel}_R(H)$ is a topological universe over Set. Moreover, we show that exponential objects in $\text{IRel}_R(H)$ are quite different from those in $\text{IRel}(H)$.

AMS Subject Classification: 04A72, 18B10, 18D15, 03F55
Key Words: intuitionistic H-fuzzy reflexive relation, cartesian closed category, topological universe

1. Introduction

In 1965, Zadeh \cite{26} introduced a concept of a fuzzy set as the generalization of a crisp set. Also, he introduce a concept of a fuzzy relation as the generalization of a crisp relation in \cite{27}. In 1986, Atanassov \cite{1} introduced a notion of an intuitionistic fuzzy set as the generalization of a fuzzy set. After that time, Banerjee and Basnet \cite{2}, Biswas \cite{3}, and Hur and his colleagues applied
the concept of intuitionistic fuzzy sets to group theory. Çoker [6], Hur and his colleagues [16], and Lee and Lee [22] applied one to topology. Also, Hur and his colleagues [15] applied the notion of intuitionistic fuzzy sets to topological group. In particular, Hur and his colleagues [18, 19] studied categorical structures of the category $\text{ISet}(H)$ consisting of intuitionistic H-fuzzy sets and the category $\text{IRel}(H)$ consisting of intuitionistic H-fuzzy relational spaces in a viewpoint of topological universe, defined by Nel [23].

In this paper, we study categorical structures of the subcategory $\text{IRel}_R(H)$ of $\text{IRel}(H)$ consisting of intuitionistic H-fuzzy reflexive relational spaces on sets in a viewpoint of a topological universe. In particular, it is very interesting that exponential objects in $\text{IRel}_R(H)$ are shown to be quite different from those in $\text{IRel}(H)$ (see [19]).

For general background for lattice theory, we refer to [3, 20] and for general categorical background to [8, 9, 21, 23].

2. Preliminaries

We will introduce some well-known definitions and results [9,21] which are needed in a later sections.

Definition 1.1. (see [9]) A category A is said to be well-powered if each A-object has a representative class of subobjects that is a set.

Dual Notion. co-(well-powered) [i.e., each object has a representative class of quotient objects which is a set].

Definition 1.2. (see [21]) Let A be a concrete category.

1. The A-fibre of a set X is the class of all A-structures on X.
2. A is called properly fibred over Set provided that the following conditions hold:
 1. (Fibre-Smallness) For each set X, the A-fibre of X is a set.
 2. (Terminal Separator Property) For each singleton set X, the A-fibre of X has precisely one element.
 3. If ξ and η are A-structures on a set X such that $1_X : (X, \xi) \to (X, \eta)$ and $1_X : (X, \eta) \to (X, \xi)$ are A-morphisms, then $\xi = \eta$.

Result 1.A. (see [21, Theorem 2.4; 9, Proposition 36.10 and 36.11]) Let A be a well-powered and co-(well-powered) topological category and let B be a subcategory of A. Then the following are equivalent:

1. B is epireflective in A.
2. B is closed under the formation of initial monosources.
3. B is closed under the formation of products and pullbacks in A.
Result 1.B. (see [21, Theorem 2.5]) Let A be a well-powered and co-(well-powered) topological category and let B be a subcategory of A. Then the following are equivalent:

1. B is bireflective in A.
2. B is closed under the formation of initial sources.

Result 1.C. (see [21, Theorem 2.6]) If A is a (property fibred, resp.) topological category and B is a bireflective subcategory of A, then B is also a (property fibred, resp.) topological category. Moreover, every source in B which is initial in A is initial in B.

Definition 1.3. (see [8]) A category A is called cartesian closed provided that the following conditions hold:

1. For any A-objects A and B, there exists a product $A \times B$ in A.
2. Exponential exist in A, i.e., for any A-object A, the functor $A \times - : A \to A$ has a right adjoint, i.e., for any A-object B, there exists an A-object B^A and a A-morphism $e_{A,B} : A \times B^A \to B$ (called the evaluation) such that for any A-object C and any A-morphism $f : A \times C \to B$, there exists a unique A-morphism $f : C \to B^A$ such that the diagram

$$
\begin{array}{ccc}
A \times B^A & \xrightarrow{e_{A,B}} & B \\
\downarrow \exists 1_A \times f & & \downarrow f \\
A \times C & & \\
\end{array}
$$

commutes.

Definition 1.4. (see [23]) A category A is called a topological universe over \textbf{Set} provided that the following conditions hold:

1. A is well-structured over \textbf{Set}, i.e., (i) A is a concrete category; (ii) A has the fibre-smallness condition; (iii) A has the terminal separator property.
2. A is cotopological over \textbf{Set}.
3. Final episinks in A are preserved by pullbacks, i.e., for any final episink $(g_\lambda : X \to Y)_\Lambda$ and any A-morphism $f : W \to Y$, the family $(e_\lambda : U_\lambda \to W)_\Lambda$, obtained by taking the pullback of f and g_λ for each λ, is again a final episink.

Definition 1.5. (see [25]) A category A is called a topos provided that the following conditions hold:

1. There is a terminal object U in A, i.e., for each A-object A, there exists one and only one A-morphism from A to U.
(2) \(\mathcal{A} \) has equalizers i.e., for any \(\mathcal{A} \)-objects \(A \) and \(B \) and \(\mathcal{A} \)-morphisms
\[
A \xrightarrow{f} B,
\]
there exist an \(\mathcal{A} \)-object \(C \) and an \(\mathcal{A} \)-morphism \(h : C \to A \) such that:
(a) \(f \circ h = g \circ h \),
(b) for each \(\mathcal{A} \)-object \(C' \) and \(\mathcal{A} \)-morphism \(h' : C' \to A \) with \(f \circ h' = g \circ h' \), there exists a unique \(\mathcal{A} \)-morphism \(\overline{h} : C' \to C \) such that \(h' = h \circ \overline{h} \), i.e., the diagram
\[
\begin{array}{ccc}
C' & \xrightarrow{h'} & C \\
\downarrow & & \downarrow \\
A & \xrightarrow{f} & B
\end{array}
\]
commutes.

(3) \(\mathcal{A} \) is cartesian closed.

(4) There is a subobject classifier in \(\mathcal{A} \), i.e., there is an \(\mathcal{A} \)-object \(\Omega \) and \(\mathcal{A} \)-morphism \(v : U \to \Omega \) such that for each \(\mathcal{A} \)-monomorphism \(m : A' \to A \), there exists a unique \(\mathcal{A} \)-morphism \(\phi_m : A \to \Omega \) such that the following diagram is a pullback:
\[
\begin{array}{ccc}
A' & \xrightarrow{m} & U \\
\downarrow & & \downarrow \\
A & \xrightarrow{\phi_m} & \Omega
\end{array}
\]

Throughout this paper, we use \(H \) as a complete Heyting algebra.

Definition 1.6. (see [23]) A category \(\mathcal{A} \) is called a topological universe over \(\text{Set} \) provided that the following conditions hold:

(1) \(\mathcal{A} \) is well-structured over \(\text{Set} \), i.e., (i) \(\mathcal{A} \) is a concrete category; (ii) \(\mathcal{A} \) has the fibre-smallness condition; (iii) \(\mathcal{A} \) has the terminal separator property.

(2) \(\mathcal{A} \) is cotopological over \(\text{Set} \).

(3) Final episinks in \(\mathcal{A} \) are preserved by pullbacks, i.e., for any final episink \((g_\lambda : X \to Y)_\lambda \) and any \(\mathcal{A} \)-morphism \(f : W \to Y \), the family \((e_\lambda : U_\lambda \to W)_\lambda \), obtained by taking the pullback of \(f \) and \(g_\lambda \) for each \(\lambda \), is again a final episink.

Definition 1.7. (see [19]) Let \(X \) be a set. A pair \(R = (\mu_R, \nu_R) \) is called an intuitionistic \(H \)-fuzzy relation (in shot, IHFR) on \(X \) if it satisfies the following
conditions:

(i) $\mu_R : X \times X \to H$ and $\nu_R : X \times X \to H$ are mappings, where μ_R and ν_R denote the degree of membership (namely $\mu_R(x, y)$) and the degree of nonmembership (namely $\nu_R(x, y)$) of each $(x, y) \in X \times X$ to R.

(ii) $\mu_R \leq N(\nu_R)$, i.e., $\mu_R(x, y) \leq N(\nu_R(x, y))$ for each $(x, y) \in X \times X$.

In this case, (X, R) or (X, μ_R, ν_R) is called an intuitionistic H-fuzzy relational space (in short, IHFRS).

Definition 1.8. (see [19]) Let (X, R_X) and (Y, R_Y) be an IHFRSs. A mapping $f : X \to Y$ is called a relation preserving mapping if $\mu_{R_X} \leq \mu_{R_Y} \circ f^2$ and $\nu_{R_X} \geq \nu_{R_Y} \circ f^2$, where $f^2 = f \times f$.

From Definition 1.7 and Definition 1.8, we can form a concrete category $\text{IRel}(H)$ consisting of all relational spaces and relation preserving mappings between them. Every $\text{IRel}(H)$-mapping will be called an $\text{IRel}(H)$-mapping.

3. The Category $\text{IRel}_R(H)$

In this section, we obtain a subcategory $\text{IRel}_R(H)$ of $\text{IRel}(H)$ which is a topological universe over Set. It is very interesting that exponential objects in $\text{IRel}_R(H)$ are shown to be quite different from those in $\text{IRel}(H)$ constructed in [19].

Definition 2.1. An IHFR R on a set X is said to be reflexive if $\mu_R(x, x) = 1$ and $\nu_R(x, x) = 0$ for each $x \in X$.

The class of all intuitionistic H-fuzzy reflexive relational spaces and $\text{IRel}(H)$-mappings between them forms a subcategory of $\text{IRel}(H)$ and denoted by $\text{IRel}_R(H)$.

It is clear that $\text{IRel}_R(H)$ is a full and isomorphism-closed subcategory of $\text{IRel}(H)$.

We can easily obtain the following.

Proposition 2.2. $\text{IRel}_R(H)$ is properly fibred over Set.

Lemma 2.3. $\text{IRel}_R(H)$ is closed under the formation of initial sources in $\text{IRel}(H)$.

Proof. Let $(f_\alpha : (X, R) \to (X_\alpha, R_\alpha))_\Gamma$ be any initial source in $\text{IRel}(H)$ such that $(X_\alpha, R_\alpha) \in \text{IRel}_R(H)$ for each $\alpha \in \Gamma$. Let $x \in X$. Since R_α is reflexive for each $\alpha \in \Gamma$, $\mu_{R_\alpha} \circ f_\alpha^2(x, x) = 1$ and $\nu_{R_\alpha} \circ f_\alpha^2(x, x) = 0$. Thus $\mu_R(x, x) = \bigwedge_\Gamma \mu_{R_\alpha} \circ f_\alpha^2(x, x) = 1$ and $\nu_R(x, x) = \bigvee_\Gamma \nu_{R_\alpha} \circ f_\alpha^2(x, x) = 0$. So R is reflexive. Hence $(X, R) \in \text{IRel}_R(H)$. This completes the proof. \hfill \Box

From Result 1.B, Result 1.C and Lemma 2.3, we obtain the following result.
Theorem 2.4. (1) $\mathrm{IRel}_R(H)$ is a bireflective subcategory of $\mathrm{IRel}(H)$.

(2) $\mathrm{IRel}_R(H)$ is topological over Set.

We show that $\mathrm{IRel}_R(H)$ is cotopological over Set, directly.

Theorem 2.5. $\mathrm{IRel}_R(H)$ has final structures over Set.

Proof. Let X be any set and let $((X_\alpha, R_\alpha))_{\Gamma}$ any family of intuitionistic H-fuzzy reflexive relational spaces indexed by a class Γ. Let $(f_\alpha : X_\alpha \to X)_{\Gamma}$ be any sink of mapping. We define two mappings $\mu_R : X \times X \to H$ and $\nu_R : X \times X \to H$ as follows: for each $(x, y) \in X \times X$,

$$
\mu_R(x, y) = \begin{cases}
\bigvee_{(x_\alpha, y_\alpha) \in f_\alpha^{-1}(x, y)} \mu_{R_\alpha}(x_\alpha, y_\alpha) & \text{if } (x, y) \in (X \times X - \Delta_X), \\
1 & \text{if } (x, y) \in \Delta_X,
\end{cases}
$$

and

$$
\nu_R(x, y) = \begin{cases}
\bigwedge_{(x_\alpha, y_\alpha) \in f_\alpha^{-1}(x, y)} \mu_{R_\alpha}(x_\alpha, y_\alpha) & \text{if } (x, y) \in (X \times X - \Delta_X), \\
0 & \text{if } (x, y) \in \Delta_X,
\end{cases}
$$

where $\Delta_X = \{(x, x) : x \in X\}$ and $f_\alpha^{-1} = f_\alpha^{-1} \circ f_\alpha^{-1}$. Then clearly $(X, R) \in \mathrm{IRel}_R(H)$. Moreover, we can easily check that $(f_\alpha : (X_\alpha, R_\alpha) \to (X, R))_{\Gamma}$ is a final sink in $\mathrm{IRel}_R(H)$.

Theorem 2.6. Final episinks in $\mathrm{IRel}_R(H)$ are preserved by pullbacks.

Proof. Let $(g_\alpha : (X_\alpha, R_\alpha) \to (Y, R_Y))_{\Gamma}$ be any final episink in $\mathrm{IRel}_R(H)$ and let $f : (W, R_W) \to (Y, R_Y)$ any $\mathrm{IRel}(H)$-mapping, where $(W, R_W) \in \mathrm{IRel}_R(H)$. For each $\alpha \in \Gamma$, let us take $U_\alpha, R_{U_\alpha}, e_\alpha$ and p_α as in the process of the proof of Theorem 2.7 in [19]. By Theorem 2.4(1) and Result 1.A, $\mathrm{IRel}_R(H)$ is closed under the formation of pullbacks in $\mathrm{IRel}(H)$. Thus it is enough to show that $(e_\alpha : (U_\alpha, R_{U_\alpha}) \to (W, R_W))_{\Gamma}$ is final in $\mathrm{IRel}_R(H)$.

Suppose R is the final IHFR on W with respect to $(e_\alpha)_{\Gamma}$. By the process of the proof of Theorem 2.6 in [10], $\mu_{R_W} = \mu_R$. Let $(w, w') \in (W \times W - \Delta_W)$.

Then:

\[\nu_{R'w}(w, w') = \nu_{Rw}(w, w') \cap \nu_{Rw}(w, w') \geq \nu_{Rw}(w, w') \cap \nu_{Ry} \circ f^2(w, w) \]

Since \(f : (W, R_w) \rightarrow (Y, R_Y) \) is an IRel(H)-mapping

\[= \nu_{Rw}(w, w') \cap \nu_{Ry}(f(w), f(w')) \]

\[= \nu_{Rw}(w, w') \vee \bigwedge_{\Gamma} \bigwedge_{(x, x') \in \mathbb{g}_a} \nu_{Ra}(x, x') \]

(Since \(\nu_{Rw} \) is a concrete quasitopos in the sense of E.J. Dubuc [7].)

\[= \bigwedge_{\Gamma} \bigwedge_{(x, x') \in \mathbb{g}_a} \nu_{Ra}(x, x') \]

\[= \bigwedge_{\Gamma} \nu_{R_{(w, w')}}((w, x), (w', x')) \].

Thus \(\nu_{Rw}(w, w') \geq \nu_R(w, w') \), i.e., \(\nu_{Rw} \geq \nu_R \). On the other hand, by the similar argument as the process of the proof of Theorem 2.7 in [19], we have \(\nu_R \geq \nu_{Rw} \) on \(W \times W - \Delta_a \). So \(\nu_R = \nu_{Rw} \) on \(W \times W - \Delta_a \). Now let \(w \in \Delta_a \). Then clearly \(\nu_R(w, w) = 0 = \nu_{Rw}(w, w) \). Hence \(\nu_R = \nu_{Rw} \) on \(W \times W \). This completes the proof. \qed

Hence, by Proposition 2.2, Theorem 2.4(2) and Theorem 2.6, we obtain the following result.

Theorem 2.7. IRel(H) is a topological universe over Set. Hence IRel(H) is a concrete quasitopos in the sense of E.J. Dubuc [7].

Theorem 2.8. IRel(H) has exponential objects. Hence IRel(H) is cartesian closed over Set.

Proof. For any \(X = (X, R_X), Y = (Y, R_Y) \in \text{IRel}(H) \), let \(Y^X = \text{hom}_{\text{IRel}(H)}(X, Y) \). We define two mappings \(\mu_R : Y^X \times Y^X \rightarrow H \) and \(\nu_R : Y^X \times Y^X \rightarrow H \) as follows: for each \((f, g) \in Y^X \times Y^X \),

\[\mu_R(f, g) = \begin{cases} 1 & \text{if } D(f, g) = \emptyset, \\ \bigwedge_{(x, y) \in D(f, g)} \mu_R(f(x), g(y)) & \text{if } D(f, g) \neq \emptyset, \end{cases} \]

and

\[\nu_R(f, g) = \begin{cases} 0 & \text{if } E(f, g) = \emptyset, \\ \bigvee_{(x, y) \in E(f, g)} \nu_R(f(x), g(y)) & \text{if } E(f, g) \neq \emptyset, \end{cases} \]
where \(D(f, g) = \{(x, y) \in X \times X : \mu_{RX}(x, y) > \mu_{RY}(f(x), g(y))\}\) and \(E(f, g) = \{(x, y) \in X \times X : \nu_{RX}(x, y) < \nu_{RY}(f(x), g(y))\}\).

Then it is clear that \(E(f, g) \neq \emptyset\) if and only if \(D(f, g) \neq \emptyset\) for each \((f, g) \in Y^X \times Y^X\) and \(N(\mu_{R}(f, g) \geq \mu_{R}(f, g))\) for each \((f, g) \in Y^X \times Y^X\). Thus \((Y^X, R) \in \text{IRel}(H)\). Since \(f : X \to Y\) is an \(\text{IRel}(H)\)-mapping, \(D(f, f) = \emptyset = E(f, f)\).

So \((Y^X, R) \in \text{IRel}_R(H)\). Let \(Y^X = (Y^X, R)\). Now we define a mapping \(e_{X,Y} : X \times Y^X \to Y\) by \(e_{X,Y}(a, f) = f(a)\) for each \((a, f) \in X \times Y^X\). Let \(((a, f), (b, g)) \in (X \times Y^X) \times (X \times Y^X)\). Then, by the process of the proof of Remark 2.8 in [10], \(\mu_{RX \times R} \leq \mu_{RY} \circ e_{X,Y}^2\). Suppose \(E(f, g) = \emptyset\). Then:

\[
\nu_{RX \times R}((a, f), (b, g)) = \nu_{RX}(a, b) \lor \nu_{R}(f, g)
\]

\[
= \nu_{RX}(a, b) \lor \nu_{R}(f, g) \lor [\bigvee_{(x, y) \in E(f, g)} \nu_{R}(f(x), g(y))] \geq \nu_{R}(f(a), g(b))
\]

\[
= \nu_{R}(f(a), g(b)).
\]

Suppose \(E(f, g) \neq \emptyset\). Then:

\[
\nu_{RX \times R}((a, f), (b, g)) = \nu_{RX}(a, b) \lor \nu_{R}(f, g)
\]

\[
= \nu_{RX}(a, b) \lor \nu_{R}(f, g) \lor [\bigvee_{(x, y) \in E(f, g)} \nu_{R}(f(x), g(y))] \geq \nu_{R}(f(a), g(b))
\]

\[
= \nu_{R}(f(a), g(b)).
\]

In all, \(\nu_{RX \times R} \geq \nu_{R} \circ e_{X,Y}^2\). So \(e_{X,Y} : X \times Y^X \to Y\) is an \(\text{IRel}(H)\)-mapping.

For any \(Z = (Z, R_Z) \in \text{IRel}_R(H)\), let \(h : X \times Z \to Y^X\) be any \(\text{IRel}(H)\)-
mapping. Define \(\overline{h} : Z \to Y^X\) by \(\overline{h}(c)(a) = h(a, c)\) for each \(c \in Z\) and each \(a \in X\). Let \(c \in Z\) and let \(a, b \in X\). Then, by the process of the proof of Remark 2.8 in [6], \(\mu_{RX} \leq \mu_{RY} \circ |\overline{h}(c)|_2^2\). On the other hand,

\[
\nu_{RY} \circ |\overline{h}(c)|_2^2(a, b) = \nu_{RY}(|\overline{h}(c)|_2(a, b))
\]

\[
= \nu_{RY}(h(a, c), h(b, c)) \leq \nu_{RX \times R_Z}((a, c), (b, c))
\]

\[
= \nu_{RX}(a, b) \lor \nu_{R_Z}(c, c) = \nu_{RY}(a, b).
\]

Thus \(\nu_{RX} \geq \nu_{RY} \circ |\overline{h}(c)|_2^2\). So \(\overline{h}(c) : X \to Y\) is an \(\text{IRel}(H)\)-mapping for each \(c \in Z\) and thus \(\overline{h}\) is well-defined. Now let \(c, c' \in Z\). Then, by the process of the proof of Remark 2.8 in [6], \(\mu_{R_Z} \leq \mu_{R} \circ \overline{h}^2\). We will show that \(\nu_{R_Z} \geq \nu_{R} \circ \overline{h}^2\).

Suppose \(E(\overline{h}(c), \overline{h}(c')) = \emptyset\). Then \(\nu_{R} \circ \overline{h}^2(c, c') = \nu_{R}(\overline{h}(c), \overline{h}(c')) = 0 \leq \nu_{R_Z}(c, c')\).
Suppose $E(\overline{h}(c), \overline{h}(c')) \neq \emptyset$. Then:

\[
\nu_R \circ \overline{h}^2 (c, c') = \nu_R (\overline{h}(c), \overline{h}(c'))
= \bigvee_{(a,b) \in E(\overline{h}(c), \overline{h}(c'))} \nu_{R_Y} ([\overline{h}(c)](a), [\overline{h}(c')](b))
= \bigvee_{(a,b) \in E(\overline{h}(c), \overline{h}(c'))} \nu_{R_Y} (h(a,c), h(b,c'))
= \bigvee_{(a,b) \in E(\overline{h}(c), \overline{h}(c'))} \nu_{R_Y} \circ \overline{h}^2 ((a,c), (b,c'))
\leq \bigvee_{(a,b) \in E(\overline{h}(c), \overline{h}(c'))} \nu_{RX \times R_Z} ((a,c), (b,c'))
= \bigvee_{(a,b) \in E(\overline{h}(c), \overline{h}(c'))} [\nu_{RX} (a) \vee \nu_{R_Z} (c, c')].
\]

On the other hand, let $(a,b) \in E(\overline{h}(c), \overline{h}(c'))$. Then:

\[
\nu_{RX} (a) < \nu_{R_Y} ([\overline{h}(c)](a), [\overline{h}(c')](b)) = \nu_{R_Y} (h(a,c), h(b,c'))
= \nu_{R_Y} \circ \overline{h}^2 ((a,c), (b,c')) \leq \nu_{RX \times R_Z} ((a,c), (b,c')) = \nu_{RX} (a) \vee \nu_{R_Z} (c, c').
\]

Thus $\nu_{RX} (a) < \nu_{R_Z} (c, c')$. So $\nu_R \circ \overline{h}^2 (c, c') \leq \nu_{R_Z} (c, c')$. In all, $\nu_{R_Z} \geq \nu_R \circ \overline{h}^2$. Hence \overline{h} is an $I_{R}(H)$-mapping. Moreover, \overline{h} is unique and $e_{X,Y} \circ (1_X \times \overline{h}) = h$. This completes the proof. \(\square\)

Remark 2.9. (1) In [24], Y. Noh obtained exponential objects in $I_{R}(I)$, where $I = [0,1]$. In Theorem 2.8, we showed that the construction of an exponential object in $I_{R}(I)$ is applicable to the case of $I_{R}(H)$.

(2) We note that exponential objects in $I_{R}(H)$ are quite different from those in $I_{R}(H)$ constructed in Theorem 2.9 in [19].

(3) $I_{R}(H)$ has no subobject classifier.

Example 2.10. Let $H = \{0,1\}$ be the two points chain and let $X = \{a, b\}$. Let R_1 and R_2 be the intuitionistic H-fuzzy reflexive relations on X given by:

\[
\begin{align*}
\mu_{R_1}(a,a) &= \mu_{R_1}(b,b) = 1, \mu_{R_1}(a,b) = \mu_{R_1}(b,a) = 0; \\
\nu_{R_1}(a,a) &= \nu_{R_1}(b,b) = 0, \nu_{R_1}(a,b) = \nu_{R_1}(b,a) = 1; \\
\mu_{R_2}(a,a) &= \mu_{R_2}(b,b) = 1, \mu_{R_2}(a,b) = \mu_{R_2}(b,a) = 0; \\
\nu_{R_2}(a,a) &= \nu_{R_2}(b,b) = 0, \nu_{R_2}(a,b) = \nu_{R_2}(b,a) = 1.
\end{align*}
\]

Let $1_X : (X, R_1) \rightarrow (X, R_2)$ be the identity mapping. Then clearly 1_X is both a monomorphism and an epimorphism in $I_{R}(H)$. But 1_X is not an
isomorphism in $\text{IRel}_{\mathbb{R}}(H)$. Hence $\text{IRel}_{\mathbb{R}}(H)$ has no subobject classifier (see [5]).

References

