IJPAM: Volume 20, No. 2 (2005)

NEWTON'S AND SECANT ITERATION OF
QUOTIENTS OF FIBONACCI AND LUCAS NUMBERS

Roman Witu\la$^1$, Damian S\lota$^2$
$^{1,2}$Institute of Mathematics
Silesian University of Technology
Kaszubska 23, Gliwice 44-100, POLAND
$^2$e-mail: d.slota@polsl.pl


Abstract.The forward and the backward Newton iterations on the elements $\mathbb{X}_{n+1}/\mathbb{X}_n$, where $\mathbb{X}_n=A\, \alpha^n
+B\, \beta^n$, $\alpha :=(1+\sqrt{5})/2$, $\beta :=(1-\sqrt{5})/2$ are studied. Moreover, some relations for the sequence $G(\mathbb{X}_{n+1}/\mathbb{X}_n,$ $\mathbb{Y}_{n+1}/\mathbb{Y}_n)$ are studied, where $G(x,y):=(xy+1)/(x+y-1)$, $\mathbb{X}_{n}$ and $\mathbb{Y}_n$ are recurrence sequences of the above-mentioned type. For example, it is proved that the identities $
G\Big(\frac{F_n}{F_{n-1}},\frac{F_m}{F_{m-1}}\Big) =
G\Big(\frac{L_n}{L_{n-1}},\frac{L_m}{L_{m-1}}\Big) =
\frac{F_{n+m-1}}{F_{n+m-2}} $ and $
G\Big(\frac{L_n}{L_{n-1}},\frac{F_m}{F_{m-1}}\Big)
=\frac{L_{n+m-1}}{L_{n+m-2}} $ are characteristic for Fibonacci and Lucas numbers.

Received: March 16, 2005

AMS Subject Classification: 11B39, 39A99

Key Words and Phrases: Newton's and Secant Iteration, Fibonacci and Lucas numbers

Source: International Journal of Pure and Applied Mathematics
ISSN: 1311-8080
Year: 2005
Volume: 20
Issue: 2